Mostrar el registro sencillo del ítem

dc.contributor.author
Bernal Rubio, Yeni Liliana  
dc.contributor.author
Gualdron Duarte, Jose Luis  
dc.contributor.author
Bates, R. O.  
dc.contributor.author
Ernst, C. W.  
dc.contributor.author
Nonneman, D.  
dc.contributor.author
Rohrer, G. A.  
dc.contributor.author
King, A.  
dc.contributor.author
Shackelford, S. D.  
dc.contributor.author
Wheeler, T. L.  
dc.contributor.author
Cantet, Rodolfo Juan Carlos  
dc.contributor.author
Steibel, J. P.  
dc.date.available
2017-12-11T19:09:26Z  
dc.date.issued
2015-11  
dc.identifier.citation
Bernal Rubio, Yeni Liliana; Gualdron Duarte, Jose Luis; Bates, R. O.; Ernst, C. W.; Nonneman, D.; et al.; Meta-analysis of genome-wide association from genomic prediction models; Wiley; Animal Genetics; 47; 1; 11-2015; 36-48  
dc.identifier.issn
0268-9146  
dc.identifier.uri
http://hdl.handle.net/11336/30191  
dc.description.abstract
Genome-wide association (GWA) studies based on GBLUP models are a common practice in animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes to enhance power of detection of rare variants. Because of difficulties in increasing sample size in animal populations, one alternative is to implement a meta-analysis (MA), combining information and results from independent GWA studies. Although this methodology has been used widely in human genetics, implementation in animal breeding has been limited. Thus, we present methods to implement a MA of GWA, describing the proper approach to compute weights derived from multiple genomic evaluations based on animal-centric GBLUP models. Application to real datasets shows that MA increases power of detection of associations in comparison with population-level GWA, allowing for population structure and heterogeneity of variance components across populations to be accounted for. Another advantage of MA is that it does not require access to genotype data that is required for a joint analysis. Scripts related to the implementation of this approach, which consider the strength of association as well as the sign, are distributed and thus account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is an attractive alternative to summarizing results from multiple genomic studies, avoiding restrictions with genotype data sharing, definition of fixed effects and different scales of measurement of evaluated traits.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Gblup  
dc.subject
Genome-Wide Association Studies  
dc.subject
Multiple Populations  
dc.subject.classification
Otras Producción Animal y Lechería  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Meta-analysis of genome-wide association from genomic prediction models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-28T15:08:22Z  
dc.journal.volume
47  
dc.journal.number
1  
dc.journal.pagination
36-48  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Hoboken  
dc.description.fil
Fil: Bernal Rubio, Yeni Liliana. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Gualdron Duarte, Jose Luis. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Bates, R. O.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina  
dc.description.fil
Fil: Ernst, C. W.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina  
dc.description.fil
Fil: Nonneman, D.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos  
dc.description.fil
Fil: Rohrer, G. A.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos  
dc.description.fil
Fil: King, A.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos  
dc.description.fil
Fil: Shackelford, S. D.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos  
dc.description.fil
Fil: Wheeler, T. L.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos  
dc.description.fil
Fil: Cantet, Rodolfo Juan Carlos. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Steibel, J. P.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Michigan State University; Estados Unidos  
dc.journal.title
Animal Genetics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/age.12378  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/age.12378/abstract  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738412/