Mostrar el registro sencillo del ítem

dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Stukowski, Alexander  
dc.contributor.author
Tang, Yizhe  
dc.contributor.author
Tramontina Videla, Diego Ramiro  
dc.contributor.author
Erhart, Paul  
dc.contributor.author
Urbassek, Herbery  
dc.contributor.author
Remington, Bruce A.  
dc.contributor.author
Meyers, Marc A.  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.date.available
2017-12-07T16:10:52Z  
dc.date.issued
2014-07  
dc.identifier.citation
Ruestes, Carlos Javier; Stukowski, Alexander; Tang, Yizhe; Tramontina Videla, Diego Ramiro; Erhart, Paul; et al.; Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 613; 7-2014; 390-403  
dc.identifier.issn
0921-5093  
dc.identifier.uri
http://hdl.handle.net/11336/29962  
dc.description.abstract
Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic  length-scale model is presented based on the profile of the residual indentation and geometrically-necessary dislocation theory.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Sa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Md Simulation  
dc.subject
Tantalum  
dc.subject
Nanoindentation  
dc.subject
Plasticity  
dc.subject
Twinning  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-11-09T13:35:15Z  
dc.journal.volume
613  
dc.journal.pagination
390-403  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos  
dc.description.fil
Fil: Stukowski, Alexander. Universitat Technische Darmstadt; Alemania  
dc.description.fil
Fil: Tang, Yizhe. Shanghai University. Shanghai Institute Of Applied Mathematics And Mechanics; China  
dc.description.fil
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Erhart, Paul. Chalmers University of Technology, Department of Applied Physics; Suecia  
dc.description.fil
Fil: Urbassek, Herbery. University of Kaiserslautern. Physics Department and Research Center OPTIMAS; Estados Unidos  
dc.description.fil
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory;  
dc.description.fil
Fil: Meyers, Marc A.. University of California. Department of Mechanical and Aerospace Engineering; Estados Unidos  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0921509314008466  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.msea.2014.07.001