Artículo
Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
Ardenghi, Juan Sebastian
; Bechthold, Pablo Ignacio
; Jasen, Paula Verónica
; Gonzalez, Estela Andrea
; Juan, Alfredo
Fecha de publicación:
07/2014
Editorial:
Elsevier Science
Revista:
Physica B: Condensed Matter
ISSN:
0921-4526
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order Oðℏ2Þ.
Palabras clave:
Graphene
,
Diffusion
,
Sensor Gas
,
Fermi Velocity
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFISUR)
Articulos de INSTITUTO DE FISICA DEL SUR
Articulos de INSTITUTO DE FISICA DEL SUR
Citación
Ardenghi, Juan Sebastian; Bechthold, Pablo Ignacio; Jasen, Paula Verónica; Gonzalez, Estela Andrea; Juan, Alfredo; Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene; Elsevier Science; Physica B: Condensed Matter; 452; 7-2014; 92-101
Compartir
Altmétricas