Artículo
Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface
Fecha de publicación:
06/2014
Editorial:
Elsevier Science
Revista:
Applied Surface Science
ISSN:
0169-4332
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Spin-polarized density functional theory (DFT + U) periodic calculations have been performed to study water adsorption and dissociation on the 12.5% Mn-doped CeO2(1 1 1) surface. Our results indicated that Mn cation is the surface active site for water adsorption and dissociation reactions. The H2O molecule preferably adsorbs on a Mn cation, causing some relaxation of the surface O-layer and, thus, facilitating the bonding of one of the HH2O with the nearest oxygen atom. After overcoming an energy barrier of 0.46 eV, the water molecule could dissociate into OH and H species. The latter configuration is about 50% more exothermic than the molecular one, suggesting the Ce0.875Mn0.125O1.9375(1 1 1) surface would be easily hydroxylated under reaction conditions. In addition, the calculations showed that water adsorption on the Mn-doped CeO2(1 1 1) surface did not favor the creation of surface oxygen vacancies as it has been reported for pure CeO2(1 1 1). On the other hand, we created a surface oxygen defect in the slab with structural oxygen vacancies and computed water interactions on the reduced surface. Although, the adsorption of OH species in the O-hole caused many surface and subsurface atomic displacements, no changes in the oxidation state of Mn and Ce cations were detected.
Palabras clave:
Water Adsorption
,
Mn-Doped Ceo2(1 1 1) Surface
,
Dft + u Calculations
,
Ceria
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFISUR)
Articulos de INSTITUTO DE FISICA DEL SUR
Articulos de INSTITUTO DE FISICA DEL SUR
Citación
García Pintos, Delfina ; Juan, Alfredo; Irigoyen, Beatriz del Luján; Density functional theory study of water interactions on Mn-doped CeO2(1 1 1) surface; Elsevier Science; Applied Surface Science; 313; 6-2014; 784-793
Compartir
Altmétricas