Mostrar el registro sencillo del ítem
dc.contributor.author
Larese, Monica Graciela

dc.contributor.author
Baya, Ariel Emilio

dc.contributor.author
Craviotto, Roque Mario

dc.contributor.author
Arango, Miriam R.
dc.contributor.author
Gallo, Carina
dc.contributor.author
Granitto, Pablo Miguel

dc.date.available
2017-12-05T16:01:04Z
dc.date.issued
2014-08
dc.identifier.citation
Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; et al.; Multiscale recognition of legume varieties based on leaf venation images; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 10; 8-2014; 4638-4647
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/29718
dc.description.abstract
In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd.

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Image Classification
dc.subject
Image Analysis
dc.subject
Cultivars Recognition
dc.subject
Multiscale Vein Image
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Multiscale recognition of legume varieties based on leaf venation images
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-05T15:20:34Z
dc.journal.volume
41
dc.journal.number
10
dc.journal.pagination
4638-4647
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Arango, Miriam R.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Gallo, Carina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
dc.description.fil
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Expert Systems with Applications

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2014.01.029
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414000529
Archivos asociados