Mostrar el registro sencillo del ítem
dc.contributor.author
Roda, Fernando
dc.contributor.author
Musulin, Estanislao
dc.date.available
2017-12-05T16:00:52Z
dc.date.issued
2014-12
dc.identifier.citation
Roda, Fernando; Musulin, Estanislao; An ontology-based framework to support intelligent data analysis of sensor measurements; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 17; 12-2014; 7914-7926
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/29715
dc.description.abstract
In the past years, the large availability of sensed data highlighted the need of computer-aided systems that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions (TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an efficient management of domain knowledge. In this article, an ontology-based framework for IDA is presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts. The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns that combine several variables and representation schemes can be used to infer process states and/or conditions
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Intelligent Data Analysis
dc.subject
Temporal Abstraction
dc.subject
Temporal Reasoning
dc.subject
Ontology
dc.subject
Semantic Sensor Web
dc.subject
Description Logic
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An ontology-based framework to support intelligent data analysis of sensor measurements
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-05T15:19:09Z
dc.journal.volume
41
dc.journal.number
17
dc.journal.pagination
7914-7926
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Roda, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Expert Systems with Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2014.06.033
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414003741
Archivos asociados