Mostrar el registro sencillo del ítem

dc.contributor.author
Roda, Fernando  
dc.contributor.author
Musulin, Estanislao  
dc.date.available
2017-12-05T16:00:52Z  
dc.date.issued
2014-12  
dc.identifier.citation
Roda, Fernando; Musulin, Estanislao; An ontology-based framework to support intelligent data analysis of sensor measurements; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 17; 12-2014; 7914-7926  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/29715  
dc.description.abstract
In the past years, the large availability of sensed data highlighted the need of computer-aided systems that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions (TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an efficient management of domain knowledge. In this article, an ontology-based framework for IDA is presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts. The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns that combine several variables and representation schemes can be used to infer process states and/or conditions  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Intelligent Data Analysis  
dc.subject
Temporal Abstraction  
dc.subject
Temporal Reasoning  
dc.subject
Ontology  
dc.subject
Semantic Sensor Web  
dc.subject
Description Logic  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An ontology-based framework to support intelligent data analysis of sensor measurements  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-05T15:19:09Z  
dc.journal.volume
41  
dc.journal.number
17  
dc.journal.pagination
7914-7926  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Roda, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2014.06.033  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414003741