Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables

Marchetti, Alejandro GabrielIcon ; Zumoffen, David Alejandro RamonIcon
Fecha de publicación: 04/2014
Editorial: American Chemical Society
Revista: Industrial & Engineering Chemical Research
ISSN: 0888-5885
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones; Otras Ingeniería Química

Resumen

In order to operate continuous processes near the economically optimal steady-state operating point, selfoptimizing control schemes reformulate the optimization problem as a process control problem. The objective is to find controlled variables and constant set points such that the controller leads to optimal adjustments of the inputs in the presence of stable disturbances. In particular, the null space approach consists in selecting the self-optimizing controlled variables as linear combinations of the inactive output variables, based on the first-order variation of the necessary conditions of optimality. In the self-optimizing control structures proposed in the literature, the number of controlled variables required is typically equal to the number of degrees of freedom (inputs) that are available after all the equality and active inequality constrained variables are controlled. In this paper, we propose new self-optimizing control structures based on the null space approach, where depending on the number of disturbances, the number of active constraints, and the number of inputs, it is possible to decrease the number of process-dependent controlled variables by fixing linear combinations of the inputs. The effectiveness of the proposed selfoptimizing control structures with minimum number of process-dependent controlled variables is demonstrated in simulation by means of a continuous stirred tank reactor and an evaporator
Palabras clave: Self-Optimizing Control , Null-Space Method , Minimum Number of Control Loops
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 773.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/29714
DOI: http://dx.doi.org/10.1021/ie5010509
URL: http://pubs.acs.org/doi/10.1021/ie5010509
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Marchetti, Alejandro Gabriel; Zumoffen, David Alejandro Ramon; Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables; American Chemical Society; Industrial & Engineering Chemical Research; 153; 4-2014; 10177-10193
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES