Artículo
A theory of 2-Pro-objects
Fecha de publicación:
01/2014
Editorial:
A.C. Ehresmann
Revista:
Cahiers de Topologie Et Geometrie Differentielle Categoriques
ISSN:
1245-530X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In [1], Grothendieck develops the theory of pro-objects over a category C . The fundamental property of the category Pro(C) is that there is an embedding C c −→ Pro(C), the category Pro(C) is closed under small cofiltered limits, and these limits are free in the sense that for any category E closed under small cofiltered limits, pre-composition with c determines an equivalence of categories Cat(Pro(C), E)+ 'Cat(C, E), (where the ” + ” indicates the full subcategory of the functors preserving cofiltered limits). In this paper we develop a 2-dimensional theory of pro-objects. Given a 2-category C , we define the 2-category 2-Pro(C) whose objects we call 2-pro-objects. We prove that 2-Pro(C) has all the expected basic properties adequately relativized to the 2-categorical setting, including the universal property corresponding to the one described above. We have at hand the results of Cat -enriched category theory, but our theory goes beyond the Cat -enriched case since we consider the non strict notion of pseudo-limit, which is usually that of practical interest.
Palabras clave:
2-Pro-Object
,
2-Filtered
,
Pseudo-Limit
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Descotte, María Emilia; Dubuc, Eduardo Julio; A theory of 2-Pro-objects; A.C. Ehresmann; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; 1; 1-2014; 1-33
Compartir