Artículo
Counting the changes of random Δ20 sets
Fecha de publicación:
01/2013
Editorial:
Oxford University Press
Revista:
Journal Of Logic And Computation
ISSN:
0955-792X
e-ISSN:
1465-363X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the number of changes of the initial segment Zs ↾n for computable approximations of a Martin-Löf random Δ02Δ20 set Z. We establish connections between this number of changes and various notions of computability theoretic lowness, as well as the fundamental thesis that, among random sets, randomness is antithetical to computational power. We introduce a new randomness notion, called balanced randomness, which implies that for each computable approximation and each constant c, there are infinitely many n such that Zs ↾n changes more than c2n times. We establish various connections with ω-c.e. tracing and omega;-c.e. jump domination, a new lowness property. We also examine some relationships to randomness theoretic notions of highness, and give applications to the study of (weak) Demuth cuppability.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Figueira, Santiago; Hirschfeldt, Denis R.; Miller, Joseph S.; Ng, Keng Meng; Nies, André; Counting the changes of random Δ20 sets; Oxford University Press; Journal Of Logic And Computation; 25; 4; 1-2013; 1073-1089
Compartir
Altmétricas