Mostrar el registro sencillo del ítem

dc.contributor.author
Suarez Bagnasco, D.  
dc.contributor.author
Montini Ballarin, Florencia  
dc.contributor.author
Cymberknop, Leandro Javier  
dc.contributor.author
Balay, G.  
dc.contributor.author
Negreira, C.  
dc.contributor.author
Abraham, Gustavo Abel  
dc.contributor.author
Armentano, Ricardo Luis  
dc.date.available
2017-12-04T14:36:33Z  
dc.date.issued
2014-12-16  
dc.identifier.citation
Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; et al.; Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries; Elsevier; Materials Science and Engineering: C; 45; 16-12-2014; 446-454  
dc.identifier.issn
0928-4931  
dc.identifier.uri
http://hdl.handle.net/11336/29530  
dc.description.abstract
Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Vascular Grafts  
dc.subject
Electrospinning  
dc.subject
Plla  
dc.subject
Mechanical Properties  
dc.subject
Pressure Diameter Loop  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Recubrimientos y Películas  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-11-10T15:39:50Z  
dc.journal.volume
45  
dc.journal.pagination
446-454  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Suarez Bagnasco, D.. Universidad de la República. Facultad de Ciencias; Uruguay  
dc.description.fil
Fil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina  
dc.description.fil
Fil: Balay, G.. Universidad de la República. Facultad de Ciencias; Uruguay  
dc.description.fil
Fil: Negreira, C.. Universidad de la República. Facultad de Ciencias; Uruguay  
dc.description.fil
Fil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Materials Science and Engineering: C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0928493114005864  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.msec.2014.09.016