Mostrar el registro sencillo del ítem
dc.contributor.author
Gutnisky, D. A.
dc.contributor.author
Zanutto, Bonifacio Silvano
dc.date.available
2017-11-26T00:33:23Z
dc.date.issued
2004
dc.identifier.citation
Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Learning obstacle avoidance with an operant behavioral model; Massachusetts Institute of Technology; Artificial Life; 10; 1; -1-2004; 65-81
dc.identifier.issn
1064-5462
dc.identifier.uri
http://hdl.handle.net/11336/29109
dc.description.abstract
Artificial intelligence researchers have been attracted by the idea of having robots learn how to accomplish a task, rather than being told explicitly. Reinforcement learning has been proposed as an appealing framework to be used in controlling mobile agents. Robot learning research, as well as research in biological systems, face many similar problems in order to display high flexibility in performing a variety of tasks. In this work, the controlling of a vehicle in an avoidance task by a previously developed operant learning model (a form of animal learning) is studied. An environment in which a mobile robot with proximity sensors has to minimize the punishment for colliding against obstacles is simulated. The results were compared with the Q-Learning algorithm, and the proposed model had better performance. In this way a new artificial intelligence agent inspired by neurobiology, psychology, and ethology research is proposed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Massachusetts Institute of Technology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Operant Learning
dc.subject
Neural Networks
dc.subject
Reinforcement Learning
dc.subject
Artificial Neural Networks
dc.subject
Bioingenieria
dc.subject.classification
Neurociencias
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Learning obstacle avoidance with an operant behavioral model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-11-16T15:12:37Z
dc.identifier.eissn
1530-9185
dc.journal.volume
10
dc.journal.number
1
dc.journal.pagination
65-81
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Portland
dc.description.fil
Fil: Gutnisky, D. A.. Universidad de Buenos Aires. Facultad de Ingeniería.Instituto de Ingeniería Biomédica; Argentina
dc.description.fil
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería.Instituto de Ingeniería Biomédica; Argentina
dc.journal.title
Artificial Life
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.mitpressjournals.org/doi/abs/10.1162/106454604322875913
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1162/106454604322875913
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/citation.cfm?id=982224
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/15035863
Archivos asociados