Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Intra-regional classification and quality evaluation of honey from Mendoza (Argentina) based on multi-elemental analysis and chemometrics

Canizo, Brenda VaninaIcon ; Diedrichs, Ana LauraIcon ; Fiorentini Chirino, Emiliano FrancoIcon ; Brusa, LucilaIcon ; Sigrist, Mirna Edit; Juricich, Juan Marcos; Pellerano, Roberto GerardoIcon ; Wuilloud, Rodolfo GermanIcon
Fecha de publicación: 01/2025
Editorial: Academic Press Inc Elsevier Science
Revista: Journal of Food Composition and Analysis
ISSN: 0889-1575
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Multi-elemental analysis of honey samples from Mendoza (Argentina) was performed with the aim of developing a reliable method for tracing honey provenance. The concentrations of twenty-six elements (Li, Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Pd, Ag, Cd, Sn, Sb, Hg and Pb) were determined by inductively coupled plasma mass spectrometry (ICP-MS), considering the most abundant isotopes. Subsequently, a comparative machine learning approach for classification and for variable selection was applied to evaluate the possibility of using them as relevant markers to predict the region where honey was produced. Our results clearly demonstrate the potential of decision tree classifiers, such as Random Forest (RF), C5.0, recursive partitioning (rpart) and conditional inference tree (ctree), as simple and agile chemometric tools for honey origin identification. Moreover, the variable selection tools reduced the elemental data matrix to only six elements (Co, Sr, Zn, Na, Rb and Li) which were identified as the most important for predicting honey origin.
Palabras clave: Classification multielemental , Honey , Mendoza , Chemometric
Ver el registro completo
 
Archivos asociados
Tamaño: 2.329Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/280273
URL: https://linkinghub.elsevier.com/retrieve/pii/S088915752400992X
DOI: http://dx.doi.org/10.1016/j.jfca.2024.106958
Colecciones
Articulos(IBAM)
Articulos de INST.DE BIOLOGIA AGRICOLA DE MENDOZA
Articulos(ICB)
Articulos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Articulos(IQUIBA-NEA)
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Canizo, Brenda Vanina; Diedrichs, Ana Laura; Fiorentini Chirino, Emiliano Franco; Brusa, Lucila; Sigrist, Mirna Edit; et al.; Intra-regional classification and quality evaluation of honey from Mendoza (Argentina) based on multi-elemental analysis and chemometrics; Academic Press Inc Elsevier Science; Journal of Food Composition and Analysis; 137; 1-2025; 1010
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES