Artículo
FORCINN: First‐Order Reversal Curve Inversion of Magnetite Using Neural Networks
Pei, Zhaowen; Williams, Wyn; Nagy, Lesleis; Paterson, Greig A.; Moreno Ortega, Roberto
; Muxworthy, Adrian R.; Chang, Liao
; Muxworthy, Adrian R.; Chang, Liao
Fecha de publicación:
02/2025
Editorial:
American Geophysical Union
Revista:
Geophysical Research Letters
ISSN:
0094-8276
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
First‐order reversal curve (FORC) diagrams are a standard rock magnetic tool for analyzing bulk magnetic hysteresis behaviors, which are used to estimate the magnetic mineralogies and magnetic domain states of grains within natural materials. However, the interpretation of FORC distributions is challenging due to complex domain‐state responses, which introduce well‐documented uncertainties and subjectivity. Here, we propose a neural network algorithm (FORCINN) to invert the size and aspect ratio distribution from measured FORC data. We trained and tested the FORCINN model using a data set of synthetic numerical FORCs for single magnetite grains with various grain‐sizes (45–400 nm) and aspect ratios (oblate and prolate grains). In addition to successfully testing against synthetic data sets, FORCINN was found to provide good estimates of the grain‐size distributions for basalt samples and identify sample size differences in marine sediments.
Palabras clave:
Nanomagnetism
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Pei, Zhaowen; Williams, Wyn; Nagy, Lesleis; Paterson, Greig A.; Moreno Ortega, Roberto; et al.; FORCINN: First‐Order Reversal Curve Inversion of Magnetite Using Neural Networks; American Geophysical Union; Geophysical Research Letters; 52; 3; 2-2025; 1-11
Compartir
Altmétricas