Artículo
Maximal Norms of Orthogonal Projections and Closed-Range Operators
Fecha de publicación:
07/2025
Editorial:
Multidisciplinary Digital Publishing Institute
Revista:
Symmetry
ISSN:
2073-8994
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Using the Dixmier angle between two closed subspaces of a complex Hilbert space H,we establish the necessary and sufficient conditions for the operator norm of the sum oftwo orthogonal projections, PW1 and PW2 , onto closed subspaces W1 and W2, to attainits maximum, namely ∥PW1 + PW2∥ = 2. These conditions are expressed in terms of thegeometric relationship and symmetry between the ranges of the projections. We applythese results to orthogonal projections associated with a closed-range operator via itsMoore–Penrose inverse. Additionally, for any bounded operator T with closed range in H,we derive sufficient conditions ensuring ∥TT† + T†T∥ = 2, where T† denotes the Moore–Penrose inverse of T. This work highlights how symmetry between operator ranges andtheir algebraic structure governs norm extremality and extends a recent finite-dimensionalresult to the general Hilbert space setting.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Furuichi, Shigeru; Maximal Norms of Orthogonal Projections and Closed-Range Operators; Multidisciplinary Digital Publishing Institute; Symmetry; 17; 7; 7-2025; 1-16
Compartir
Altmétricas