Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Fault diagnosis strategy for the current source section of a field-cycling nuclear magnetic resonance instrument

Vélez Ibarra, María DelfinaIcon ; Vodanovic, Gonzalo Tomás; Laprovitta, Agustín MiguelIcon ; Peretti, Gabriela Marta; Romero, Eduardo; Anoardo, EstebanIcon
Fecha de publicación: 09/2025
Editorial: IOP Publishing
Revista: Measurement Science & Technology (print)
ISSN: 0957-0233
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

This paper proposes a fault diagnosis strategy to address catastrophic failures in all powercomponents of the current source of a field-cycling nuclear magnetic resonance (FC-NMR)instrument. The current source, implemented with a single power MOSFET operating in linearmode, is prone to thermal instability and degradation under high-current conditions, posingsignificant risks to system reliability. Due to the continuous conduction inherent in linear-modeoperation, fault signatures in the MOSFET could be subtle and difficult to distinguish fromnormal operational variations, making diagnostic methods relying on switching transientsineffective in this context. To overcome these limitations, an active fault diagnosis framework isintroduced to enhance fault detection and localization. This framework combines test signalinjection with data-driven artificial intelligence classifiers. Three algorithms—ResNet, aconvolutional neural network (CNN), and a nearest neighbor with dynamic time warping(NN-DTW), used as a benchmark—are evaluated using hybrid datasets derived from simulationprogram with integrated circuit emphasis (SPICE) simulations and experimental fault injections.The methodology employs time-domain signals measured at key circuit nodes, avoidingcomputationally intensive preprocessing steps. Simulation and experimental results demonstrateclassification accuracies of 100% for ResNet and NN-DTW, and 95.2% for CNN, withprediction times under 20 ms for neural networks. The proposal successfully diagnoses botheasy-to-detect faults, validated through simulation, and hard-to-detect faults, confirmedexperimentally. The entire fault diagnosis process is completed in under 15 s, making it suitablefor in-field monitoring of FC-NMR systems.
Palabras clave: active fault diagnosis , current source , data-based diagnosis , field-cycling nuclear magnetic resonance , power MOSFET
Ver el registro completo
 
Archivos asociados
Tamaño: 2.177Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/279084
URL: https://iopscience.iop.org/article/10.1088/1361-6501/ae01c3
DOI: http://dx.doi.org/10.1088/1361-6501/ae01c3
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Vélez Ibarra, María Delfina; Vodanovic, Gonzalo Tomás; Laprovitta, Agustín Miguel; Peretti, Gabriela Marta; Romero, Eduardo; et al.; Fault diagnosis strategy for the current source section of a field-cycling nuclear magnetic resonance instrument; IOP Publishing; Measurement Science & Technology (print); 36; 9; 9-2025; 1-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES