Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

DeepWiener: neural networks for CMB polarization maps and power spectrum computation

Costanza, María BelénIcon ; Scoccola, Claudia GracielaIcon ; Zaldarriaga, Matías
Fecha de publicación: 05/2025
Editorial: IOP Publishing
Revista: Journal of Cosmology and Astroparticle Physics
ISSN: 1475-7516
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

To study the early Universe, it is essential to estimate cosmological parameters with high accuracy, which depends on the optimal reconstruction of Cosmic Microwave Background (CMB) maps and the measurement of their power spectrum. In this paper, we generalize the neural network developed for applying the Wiener Filter, initially presented for temperature maps in previous work, to polarization maps. Our neural network has a UNet architecture, including an extra channel for the noise variance map, to account for inhomogeneous noise, and a channel for the mask. In addition, we propose an iterative approach for reconstructing the E and B-mode fields, while addressing the E-to-B leakage present in the maps due to incomplete sky coverage. The accuracy achieved is satisfactory compared to the Wiener Filter solution computed with the standard Conjugate Gradient method, and it is highly efficient, enabling the computation of the power spectrum of an unknown signal using the optimal quadratic estimator. We further evaluate the quality of the reconstructed maps at the power spectrum level along with their corresponding errors, finding that these errors are smaller than those obtained using the well-known pseudo-C ℓ approach. Our results show that increasing complexity in the applied mask presents a more significant challenge for B-mode reconstruction.
Palabras clave: CMBR experiments , CMBR polarisation , Machine learning , Cosmology and Nongalactic Astrophysics
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.270Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/279043
URL: https://iopscience.iop.org/article/10.1088/1475-7516/2025/05/058
DOI: http://dx.doi.org/10.1088/1475-7516/2025/05/058
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Costanza, María Belén; Scoccola, Claudia Graciela; Zaldarriaga, Matías; DeepWiener: neural networks for CMB polarization maps and power spectrum computation; IOP Publishing; Journal of Cosmology and Astroparticle Physics; 2025; 05; 5-2025; 1-33
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES