Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Study of the interplay between geometry and chemistry in nanoscale hydration

Accordino, Sebastian RobertoIcon ; Menéndez, Cintia AnabellaIcon ; Loubet, Nicolás AlfredoIcon ; Alarcon, Laureano MartinIcon ; Appignanesi, Gustavo AdrianIcon
Fecha de publicación: 07/2025
Editorial: IOP Publishing
Revista: Journal of Physics: Condensed Matter
ISSN: 0953-8984
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

V4s, a novel structural indicator developed to characterize water in hydration and nanoconfined environments, was recently introduced and initially applied to water in contact with self-assembled monolayers (SAMs), graphene-like systems, and proteins. In the present work, we employ this metric to characterize SAMs featuring cavities of varying sizes. We investigate the effects of geometry and chemical composition on surface hydration by incorporating hydroxyl groups () as hydrophilic sites. When hydration implies the disruption of hydrogen bonds at the hydration layer, a defect interaction threshold (DIT) should be satisfied in order to give rise to hydrophilic behavior. This threshold is given by the amount of energy compensation a hydrogen bond defect receives in bulk water and is significantly lower than the hydrogen bond energy. Besides signaling the transition to hydrophobicity, we find that the DIT value is also relevant for nanoconfined environments. In this regard, our findings reveal that a water molecule cannot sustain more than one hydrogen-bonding site with an interaction weaker than the DIT; if a second site exceeds this threshold, the molecule desorbs. This finding quantifies the energy loss a water molecule can tolerate while maintaining wetting or hydration. Finally, by means of preliminary calculations on simplified model systems, we show that such knowledge may be instrumental in main contexts like protein binding, where removal of hydration water contributes as a relevant driving force.
Palabras clave: GEOMETRY , CHEMESTRY , NANOSCALE HYDRATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.631Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/279022
URL: https://iopscience.iop.org/article/10.1088/1361-648X/adebd4
DOI: http://dx.doi.org/10.1088/1361-648X/adebd4
Colecciones
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Accordino, Sebastian Roberto; Menéndez, Cintia Anabella; Loubet, Nicolás Alfredo; Alarcon, Laureano Martin; Appignanesi, Gustavo Adrian; Study of the interplay between geometry and chemistry in nanoscale hydration; IOP Publishing; Journal of Physics: Condensed Matter; 37; 28; 7-2025; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES