Artículo
Nonlinear eigenvalue problems for a biharmonic operator in Orlicz–Sobolev spaces
Fecha de publicación:
12/2025
Editorial:
Wiley VCH Verlag
Revista:
Mathematische Nachrichten
ISSN:
0025-584X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we study a higher-order Laplacian operator in the framework of Orlicz–Sobolev spaces, the biharmonic g-Laplacian Δ2 ∶= Δ((|Δ|) |Δ| Δ) , where =′ , with being an N-function. This operator is a generalization of the so-called bi-harmonic Laplacian Δ2. Here, we also establish basic functional properties of Δ2 , which can be applied to existence results. Afterwards, we study the eigenvalues of Δ2 , which depend on normalization conditions, due to the lack of homogeneity of the operator. Finally, we study different nonlinear eigenvalue problems associated to Δ2 and we show regimes where the corresponding spectrum concentrates at 0, ∞ or coincide with (0, ∞).
Palabras clave:
Orlicz-Sobolev spaces
,
nonlinear elliptic equations
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Ochoa, Pablo Daniel; Silva, Analia; Nonlinear eigenvalue problems for a biharmonic operator in Orlicz–Sobolev spaces; Wiley VCH Verlag; Mathematische Nachrichten; 12-2025; 1-23
Compartir
Altmétricas