Artículo
A Stefan problem for a non-classical heat equation with a convective condition
Fecha de publicación:
12/2010
Editorial:
Elsevier Science Inc.
Revista:
Applied Mathematics and Computation
ISSN:
0096-3003
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the heat source depends on the temperature at the fixed face x = 0 that provides a heating or cooling effect depending on the properties of the source term. We use the Friedman–Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations. We also obtain a comparison result of the solution (the temperature and the free boundary) with respect to the one corresponding with null source term.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A Stefan problem for a non-classical heat equation with a convective condition; Elsevier Science Inc.; Applied Mathematics and Computation; 217; 8; 12-2010; 4051-4060
Compartir
Altmétricas