Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting Treatment Outcomes in Glioblastoma: A Risk Score Model for TMZ Resistance and Immune Checkpoint Inhibition

González, NazarenoIcon ; Perez Kuper, Melanie; Garcia Fallit, MatíasIcon ; Nicola Candia, Alejandro JavierIcon ; Peña Agudelo, Jorge ArmandoIcon ; Suarez Velandia, Maicol Mauricio; Romero, Ana ClaraIcon ; Videla Richardson, Guillermo Agustin; Candolfi, MarianelaIcon
Fecha de publicación: 05/2025
Editorial: MDPI
Revista: Biology
ISSN: 2079-7737
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Glioblastoma (GBM) presents significant therapeutic challenges due to its invasivenature and resistance to standard chemotherapy, i.e., temozolomide (TMZ). This studyaimed to identify gene signatures that predict poor TMZ response and high PD−L1/PD−1tumor expression, and explore potential sensitivity to alternative drugs. We analyzedThe Cancer Genome Atlas (TCGA) biopsy data to identify differentially expressed genes(DEGs) linked to these characteristics. Among 33 upregulated DEGs, 5 were significantlycorrelated with overall survival. A risk score model was built using these 5 DEGs, classifyingpatients into low-, medium-, and high-risk groups. We assessed immune cellinfiltration, immunosuppressive mediators, and epithelial–mesenchymal transition (EMT)markers in each group using correlation analysis, Gene Set Enrichment Analysis (GSEA),and machine learning. The model demonstrated strong predictive power, with high-riskpatients exhibiting poorer survival and increased immune infiltration. GSEA revealedupregulation of immune and EMT-related pathways in high-risk patients. Our analyses suggest that high-risk patients may exhibit limited response to PD−1 inhibitors, but couldshow sensitivity to etoposide and paclitaxel. This risk score model provides a valuabletool for guiding therapeutic decisions and identifying alternative chemotherapy options toenable the development of personalized and cost-effective treatments for GBM patients.
Palabras clave: GLIOBLASTOMA , IMMUNE MICROENVIRONMENT , DIFFERENTIALLY EXPRESSED GENES , RISK SCORE MODEL , TEMOZOLOMIDE RESISTANCE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.622Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/278348
URL: https://www.mdpi.com/2079-7737/14/5/572
DOI: http://dx.doi.org/10.3390/biology14050572
Colecciones
Articulos (INEU)
Articulos de INSTITUTO DE NEUROCIENCIAS
Articulos(INBIOMED)
Articulos de INSTITUTO DE INVESTIGACIONES BIOMEDICAS
Citación
González, Nazareno; Perez Kuper, Melanie; Garcia Fallit, Matías; Nicola Candia, Alejandro Javier; Peña Agudelo, Jorge Armando; et al.; Predicting Treatment Outcomes in Glioblastoma: A Risk Score Model for TMZ Resistance and Immune Checkpoint Inhibition; MDPI; Biology; 14; 5; 5-2025; 1-24
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES