Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Prediction of adulteration level in bulk rice by modeling LIBS data using an extreme gradient boosting classifier

Pérez Rodríguez, MichaelIcon ; Villafañe, Roxana NoeliaIcon ; Neto, José Anchieta Gomes; Ferreira, Edilene Cristina; Pellerano, Roberto GerardoIcon
Tipo del evento: Congreso
Nombre del evento: XI Congreso Argentino de Química Analítica
Fecha del evento: 30/11/2021
Institución Organizadora: Asociación Argentina de Químicos Analíticos; Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura;
Título del Libro: Libro de Resúmenes: XI Congreso Argentino de Química Analítica
Editorial: Asociación Argentina de Químicos Analíticos
ISBN: 978-987-88-5110-5
Idioma: Inglés
Clasificación temática:
Química Analítica

Resumen

Rice is the staple food widely consumed by more than half of the world’s population. This cereal has a remarkable nutritional value since it contains minerals, vitamins, fibers, and essential amino acids which are necessary to build muscles and to maintain proper cellular functions1. Fraudulent labeling and adulteration are the main concerns in the pady industry due to the huge demand for rice products in the global market. Rice authenticity evaluation has therefore become in a quality requirement for protecting interests of consumers, traders and other stakeholders2. Laser induced breakdown spectroscopy (LIBS) is an interesting analytical technique for food authentication purposes, since it is capable of quickly providing spectra which are true fingerprints of sample elemental composition, requiring minimal sample preparation. In the present work, LIBS spectra obtained from rice analysis were assisted by Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) and Extreme Gradient Boosting (XGBoost) for predicting adulteration level in bulk rice samples. A total of 150 bulk rice samples purchased from local markets were individually ground using a cryogenic mill and converted into pellets by the application of 10 tons of pressure. Then, two pellets per samples were analyzed by LIBS spreading forty laser pulses on each pellet in different locations, resulting in 80 spectra per rice sample. The analyzed samples comprised 32 rice samples from pure Indica variety (high-quality) plus 118 samples adulterated at 10, 20, 30, and 40% with the Japonica variety (inferior-quality). The obtained spectra were preprocessed using Microsoft Excel® (2016) for base line correction and peak height determination. Next, UMAP was carried out to detect sample grouping trends and an XGBoost classifier was applied for selecting input variables and distinguishing among pure and adulterated rice samples, as well as identifying their level of adulteration. Fig. 1 shows average spectra obtained from pure and adulterated samples. The pattern distribution of rice samples is represented by Fig. 2, where a notable separation between the classes studied can be observed, mainly for the variety of pure rice.The modeling was evaluated by five-fold cross-validation and its performance was measured by calculating the overall accuracy as the ratio between all correct predictions and total number of examined cases. The spectral data size was reduced by choosing emission lines according to its importance for classification, which favored computing management to create a suitable model. The optimized parameter values were mtry = 14, trees = 589, min_n = 9, tree_depth = 12, learn_rate = 2.3 × 10–7, loss_reduction = 2.7 × 10–4, and sample_size = 0.997. Finally, the identification of rice adulteration level was accomplished with an accuracy of 97% in the test step, indicating a high success rate to distinguish pure and adulterated rice samples. The proposed method proved the potential of the LIBS technique for detecting adulterations in bulk rice samples with remarkable analytical features including simple, fast, low-cost, safe, and reliable measurements, based on sample mineral composition.
Palabras clave: LIBS , RICE , EGBC , ADULTERATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 801.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/278081
URL: https://www.aaqa.org.ar/web/wp-content/uploads/2022/06/Libro-XI_CAQA-2021_ISBN.p
Colecciones
Eventos(IQUIBA-NEA)
Eventos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Prediction of adulteration level in bulk rice by modeling LIBS data using an extreme gradient boosting classifier; XI Congreso Argentino de Química Analítica; Corrientes; Argentina; 2021; 51-51
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES