Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces

Alvarez Hamelin, José IgnacioIcon ; Giribet, Juan IgnacioIcon ; Mas, Ignacio AgustinIcon ; Presenza, Juan Francisco
Fecha de publicación: 12/2025
Editorial: Elsevier Science Inc.
Revista: Linear Algebra and its Applications
ISSN: 0024-3795
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

Graph rigidity—the study of vertex realizations in ℝ d and the motions that preserve the induced edge lengths—has been the focus of extensive research for decades. Its equivalency to graph connectivity for d = 1 is well known; thus it can be viewed as a generalization that incorporates geometric constraints. Graph connectivity is commonly quantified by the algebraic connectivity, the second-smallest eigenvalue of the Laplacian matrix. Recently, a graph invariant for quantifying graph rigidity in ℝ d , termed the generalized algebraic connectivity, was introduced. Recognizing the intrinsic relationship between rigidity and connectivity, this article presents new contributions. In particular, we introduce the d -rigidity ratio as a metric for expressing the level of rigidity of a graph in ℝ d relative to its connectivity. We show that this ratio is bounded and provide extremal examples. Additionally, we offer a new upper bound for the generalized algebraic connectivity that depends inversely on the diameter and on the vertex connectivity, thereby improving previous bounds. Moreover, we investigate the relationship between graph rigidity and the diameter—a measure of the graph’s overall extent. We provide the maximal diameter achievable by rigid graphs and show that generalized path graphs serve as extremal examples. Finally, we derive an upper bound for the generalized algebraic connectivity of generalized path graphs that (asymptotically) improves upon existing ones by a factor of four.
Palabras clave: graph rigidity , control applications
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 182.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/277989
URL: https://linkinghub.elsevier.com/retrieve/pii/S0024379525003192
DOI: http://dx.doi.org/10.1016/j.laa.2025.07.028
URL: https://arxiv.org/abs/2505.16015v1
Colecciones
Articulos(INTECIN)
Articulos de INST.D/TEC.Y CS.DE LA ING."HILARIO FERNANDEZ LONG"
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Alvarez Hamelin, José Ignacio; Giribet, Juan Ignacio; Mas, Ignacio Agustin; Presenza, Juan Francisco; Extremal properties and bounds for the generalized algebraic connectivity of graphs in Euclidean spaces; Elsevier Science Inc.; Linear Algebra and its Applications; 727; 12-2025; 24-36
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES