Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Weighted maximal inequalities on hyperbolic spaces

Antezana, Jorge AbelIcon ; Ombrosi, Sheldy JavierIcon
Fecha de publicación: 12/2025
Editorial: Academic Press Inc Elsevier Science
Revista: Advances in Mathematics
ISSN: 0001-8708
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this work we study the singularity of the (centered) maximal operator in the hyperbolic spaces. With this aim, we changed the density of the underlying measure to avoid possible compensations due to the symmetries of the hyperbolic measure. Our starting point is a variant of the well-known endpoint Fefferman-Stein inequality for the centered Hardy-Littlewood maximal function. This inequality generalizes, in the hyperbolic setting, the weak estimates obtained by Strömberg (1981) [17] who answered a question posed by Stein and Wainger (1978) [16]. Our approach is based on a combination of geometrical arguments and the techniques used in the discrete setting of regular trees by Naor and Tao (2010) [11]. This variant of the Fefferman-Stein inequality paves the road to weighted estimates for the maximal function for . On the one hand, we show that the classical conditions are not the right ones in this setting. On the other hand, we provide sharp sufficient conditions for weighted weak and strong type boundedness of the centered maximal function, when . The sharpness is in the sense that, given , we can construct a weight satisfying our sufficient condition for that p, and so it satisfies the weak type inequality, but the strong type inequality fails. In particular, the weak type fails as well for every .
Palabras clave: WEIGHTS , HYPERBOLIC , MAXIMAL
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 794.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/277587
DOI: http://dx.doi.org/10.1016/j.aim.2025.110641
URL: https://www.sciencedirect.com/science/article/pii/S0001870825005390
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Antezana, Jorge Abel; Ombrosi, Sheldy Javier; Weighted maximal inequalities on hyperbolic spaces; Academic Press Inc Elsevier Science; Advances in Mathematics; 482; 110641; 12-2025; 1-23
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES