Artículo
Revisiting a family of five-dimensional charged, rotating black holes
Fecha de publicación:
10/2025
Editorial:
American Physical Society
Revista:
Physical Review D: Particles, Fields, Gravitation and Cosmology
ISSN:
1550-7998
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the absence of a higher-dimensional analogue to the Kerr-Newman black hole, 5-dimensional Einstein-Maxwell theory with a Chern-Simons term has become a natural setting for studying charged, stationary solutions. A prominent example is the Chong-Cveti-L"{u}-Pope (CCLP) solution, which describes a non-extremal black hole with electric charge and two independent angular momenta. This solution has been widely studied, and generalizations have been proposed. In this paper, we revisit a large family of five-dimensional black hole solutions to Einstein-Maxwell-Chern-Simons (EMCS) field equations, which admits to be written in terms of a generalized Pleba´{n}ski-Demia´{n}ski ansatz and includes the CCLP and the Kerr-NUT-Anti-de Sitter solutions as particular cases. We show that the complete family can be brought to the CCLP form by means of a suitable coordinate transformation and a complex redefinition of parameters. Then, we compute the conserved charges associated to the CCLP form of the metric by analyzing the near-horizon asymptotic symmetries. We show that the zero-mode of the near-horizon charges exactly match the result of the Komar integrals.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Arcodía, Marcos Ramiro Alfredo; Giribet, Gaston Enrique; Laurnagaray, Juan; Revisiting a family of five-dimensional charged, rotating black holes; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 112; 8; 10-2025; 1-13
Compartir
Altmétricas