Artículo
Canine preictal topology: ordinal complexity and neural mapping
Granado, Mauro
; Martinez, Nataniel
; Miceli, Federico
; Rosso, Osvaldo Aníbal
; Montani, Fernando Fabián
; Martinez, Nataniel
; Miceli, Federico
; Rosso, Osvaldo Aníbal
; Montani, Fernando Fabián
Fecha de publicación:
10/2025
Editorial:
Springer
Revista:
European Physical Journal B - Condensed Matter
ISSN:
1434-6028
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This research explores the identification of preictal biomarkers in canine epilepsy by employing a multiscale analysis of intracranial EEG data. The approach integrates entropy and complexity quantification using the Bandt–Pompe method plane) with topological feature extraction via Self-Organizing Maps (SOMs) and Uniform Manifold Approximation and Projection (UMAP). Although the entropy-complexity framework captured subject-specific neural characteristics, it did not succeed in distinguishing between preictal and interictal states. In contrast, the SOM-UMAP pipeline revealed clear preictal markers, attributed to the reconfiguration of the mesoscale network using optimal parameters The main contributions of this study include the topological differentiation of brain states beyond the reach of traditional methods, the discovery of individualized epileptogenic patterns in UMAP embeddings, and the development of a validated methodology suitable for implantable device applications. By combining ordinal pattern analysis with topological preservation techniques, this work advances both the theoretical understanding of seizure mechanisms and the practical implementation of personalized seizure prediction tools, outperforming conventional univariate strategies to detect latent preictal signatures.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Granado, Mauro; Martinez, Nataniel; Miceli, Federico; Rosso, Osvaldo Aníbal; Montani, Fernando Fabián; Canine preictal topology: ordinal complexity and neural mapping; Springer; European Physical Journal B - Condensed Matter; 98; 10; 10-2025; 229-243
Compartir
Altmétricas