Artículo
Cut-elimination theorems for some logics associated with double Stone algebras
Fecha de publicación:
11/2025
Editorial:
Elsevier Science Inc.
Revista:
International Journal Of Approximate Reasoning
ISSN:
0888-613X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A double Stone algebra is a Stone algebra whose dual lattice is also a Stone algebra. Logics that may be associated with double Stone algebras are based on bounded distributive lattices which are endowed with two negations: a Heyting negation (the pseudocomplement) and a Brouwer negation (the dual pseudocomplement) possibly satisfying some constraints. Different authors have studied the order-preserving logic associated with double Stone algebras. Recently, the fourvalued character of this logic was exploited by providing a rough set semantics for it. In this paper, we explore the proof-theoretical aspect of two logics associated with double Stone algebras, namely, the truth-preserving and the order-preserving logic, respectively. We provide sequent systems sound and complete for these logics and prove the cut-elimination theorem for both systems.
Palabras clave:
Double Stone logics
,
Sequent calculus
,
Cut-elimination theorems
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Figallo, Martin; Slagter, Juan Sebastián; Cut-elimination theorems for some logics associated with double Stone algebras; Elsevier Science Inc.; International Journal Of Approximate Reasoning; 186; 11-2025; 1-16
Compartir
Altmétricas