Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Flaw classification in bonded joints using multivariate statistical analysis and artificial intelligence

Tais, Carlos Esteban; Fontana, Juan ManuelIcon ; Molisani Yolitti, Leonardo; O'brien, Ronald JuliánIcon ; Ballesteros, Yolanda; Carretero, Raquel Caro; del Real-Romero, Juan C.
Fecha de publicación: 06/2025
Editorial: Elsevier
Revista: International Journal of Adhesion and Adhesives
ISSN: 0143-7496
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Mecánica; Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Adhesives play an important role in multiple industries, offering versatile bonding solutions for diverse applications. However, their incorporation in structures where safety is critical has been met with hesitation due to potential degradation risks. Addressing this concern, this study introduces the preliminary assessment of a pattern recognition method aimed at automatically identifying damage in adhesive joints through acoustic signal analysis. This method was tested on experimental samples consisting of aluminum substrates bonded with an acrylic adhesive. Artificially generated defects on the samples was related to the percentage of bonded surface. Damaged samples contained either 25 %, 50 %, or 75 % of bonded surface, whereas healthy samples contained 100 % of bonded surface. Experiments involved applying an impulsive load at one end of the sample and recording the acoustic signal emitted in response to the load using a microphone located at the opposite end. Two classification algorithms were evaluated for discriminating the amount of damage of the samples. First, a multivariate statistical analysis extracted the fundamental frequencies from the acoustic signals to create a model that achieved 95 % of classification accuracy. Second, an Artificial Neural Network (ANN) model was trained and validated with features extracted from the sound pressure level (SPL) signal obtaining an average accuracy of 97.1 % for a 9-fold cross-validation. The results indicate that there is potential for further exploration of the proposed approach, leading to the development of a robust system capable of automatically detecting damage in bonded joints. Future work will explore the performance of the classification techniques for detecting other types of defects related to the lack of adhesion and inadequate curing times.
Palabras clave: ARTIFICIAL INTELLIGENCE , BONDED JOINTS , FLAW DETECTION , NEURAL NETWORKS , ACOUSTIC SIGNALS
Ver el registro completo
 
Archivos asociados
Tamaño: 4.984Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/276721
URL: https://linkinghub.elsevier.com/retrieve/pii/S0143749625000995
DOI: http://dx.doi.org/10.1016/j.ijadhadh.2025.104032
Colecciones
Articulos (IDAS)
Articulos de INSTITUTO PARA EL DESARROLLO AGROINDUSTRIAL Y DE LA SALUD
Citación
Tais, Carlos Esteban; Fontana, Juan Manuel; Molisani Yolitti, Leonardo; O'brien, Ronald Julián; Ballesteros, Yolanda; et al.; Flaw classification in bonded joints using multivariate statistical analysis and artificial intelligence; Elsevier; International Journal of Adhesion and Adhesives; 140; 6-2025; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES