Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Causal inference and GWAS: Rubin, Pearl, and Mendelian randomization

Cantet, Rodolfo Juan CarlosIcon ; Jensen, Just
Fecha de publicación: 08/2024
Editorial: Wiley Blackwell Publishing, Inc
Revista: Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie
ISSN: 0931-2668
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Genética y Herencia

Resumen

Although Genome Wide Analysis (GWAS) have been widely used to understand the genetic architecture of complex quantitative traits, interpreting their results in terms of the biological processes that determine those traits has been difficult or even lacking, because of the variability in responses to the tests of hypotheses within a trait, species, and breed or cross, and the lack of follow-up studies. It is then essential employing appropriate statistical tests that point out to the causal genes responsible of the relevant fraction of the genetic variability observed. We briefly review the main theoretical aspects of the two schools of causal inference (Rubin´s Causal Model, RCM, and Pearl´s causal inference, PCI). RCM approachsthe hypothesis testing from a randomization perspective by considering a wider space of the observation, i.e. the “potential outcomes”, rather than the narrower space that results from defining “treatment” effects after observing the data. Next, we discuss the assumptions involved to meet the requirements of randomization for RCM with observational data (non-designed experiments) with special emphasis on the Stable Unit Treatment Analysis (SUTVA). Due to the presence of “confounders” (i.e. systematic fixed effects, environmental permanent effects, interaction among genes, etc.), causal average treatment effects are viewed through the familiar lens of normal linear (or mixed) models. To overcome the difficulties of association analyses, a tests of causal effects is introduced using independentpredicted residual breeding values from animal models of genetic evaluation that avoids the effects of population structure and confounder effects. An independent section discusses the issue of whether the additive effects defined at the “gene” level by R. A. Fisher and popularized in D. S. Falconer´s textbook of quantitative genetics can be termed causal from either RCM or PCI.
Palabras clave: CAUSAL INFERENCE , GWAS , MENDELIAN RANDOMIZATION , PEARL' S CAUSAL INFERENCE , RUBIN CAUSAL MODEL , SUTVA
Ver el registro completo
 
Archivos asociados
Tamaño: 649.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/276679
URL: https://onlinelibrary.wiley.com/doi/10.1111/jbg.12898
DOI: http://dx.doi.org/10.1111/jbg.12898
Colecciones
Articulos(INPA)
Articulos de UNIDAD EJECUTORA DE INVESTIGACIONES EN PRODUCCION ANIMAL
Citación
Cantet, Rodolfo Juan Carlos; Jensen, Just; Causal inference and GWAS: Rubin, Pearl, and Mendelian randomization; Wiley Blackwell Publishing, Inc; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 142; 2; 8-2024; 200-213
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES