Artículo
Interval-valued fuzzy predicates from labeled data: An approach to data classification and knowledge discovery
Fecha de publicación:
07/2025
Editorial:
Elsevier Science Inc.
Revista:
Information Sciences
ISSN:
0020-0255
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Interpretable data classifiers play a significant role in providing transparency in the decision-making process by ensuring accountability and auditability, enhancing model understanding, and extracting new information that expands the field of knowledge in a discipline while effectively handling large datasets. This paper introduces the Type-2 Label-based Fuzzy Predicate Classification (T2-LFPC) method, in which interval-valued fuzzy predicates are used for interpretable data classification. The proposed approach begins by clustering the data within each class, associating clusters with collections of common attributes, and identifying class prototypes. Interval-valued membership functions and predicates are then derived from these prototypes, leading to the creation of an interpretable classifier. Empirical evaluations on 14 datasets, both public and synthetic, are presented to demonstrate the superior performance of T2-LFPC based on the accuracy and Jaccard index. The proposed method enables linguistic descriptions of classes, insight into attribute semantics, class property definitions, and an understanding of data space partitioning. This innovative approach enhances knowledge discovery by addressing the challenges posed by the complexity and size of modern datasets.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICYTE)
Articulos de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Articulos de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Citación
Comas, Diego Sebastián; Meschino, Gustavo Javier; Ballarin, Virginia Laura; Interval-valued fuzzy predicates from labeled data: An approach to data classification and knowledge discovery; Elsevier Science Inc.; Information Sciences; 707; 7-2025; 1-26
Compartir
Altmétricas