Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications

Riccardo, Julián JoséIcon ; Pasinetti, Pedro MarceloIcon ; Riccardo, Jose LuisIcon ; Ramirez Pastor, Antonio JoseIcon
Fecha de publicación: 07/2025
Editorial: Molecular Diversity Preservation International
Revista: Entropy
ISSN: 1099-4300
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

The statistical mechanics of structured particles with arbitrary size and shape adsorbed ontodiscrete lattices presents a longstanding theoretical challenge, mainly due to complex spatialcorrelations and entropic effects that emerge at finite densities. Even for simplified systemssuch as hard-core linear k-mers, exact solutions remain limited to low-dimensional or highlyconstrained cases. In this review, we summarize the main theoretical approaches developedby our research group over the past three decades to describe adsorption phenomena involvinglinear k-mers—also known as multisite occupancy adsorption—on regular lattices.We examine modern approximations such as an extension to two dimensions of the exactthermodynamic functions obtained in one dimension, the Fractional Statistical Theory ofAdsorption based on Haldane’s fractional statistics, and the so-called Occupation Balancebased on expansion of the reciprocal of the fugacity, and hybrid approaches such as thesemi-empirical model obtained by combining exact one-dimensional calculations and theGuggenheim–DiMarzio approach. For interacting systems, statistical thermodynamics isexplored within generalized Bragg–Williams and quasi-chemical frameworks. Particularfocus is given to the recently proposed Multiple Exclusion statistics, which capture the correlatedexclusion effects inherent to non-monomeric particles. Applications to monolayerand multilayer adsorption are analyzed, with relevance to hydrocarbon separation technologies.Finally, computational strategies, including advanced Monte Carlo techniques, arereviewed in the context of high-density regimes. This work provides a unified frameworkfor understanding entropic and cooperative effects in lattice-adsorbed polyatomic systemsand highlights promising directions for future theoretical and computational research.
Palabras clave: multisite occupancy adsorption , lattice–gas models , statistical thermodynamics , exclusion statistics
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.284Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/276597
URL: https://www.mdpi.com/1099-4300/27/7/750
DOI: http://dx.doi.org/10.3390/e27070750
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Riccardo, Julián José; Pasinetti, Pedro Marcelo; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Statistical Mechanics of Linear k-mer Lattice Gases: From Theory to Applications; Molecular Diversity Preservation International; Entropy; 27; 7; 7-2025
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES