Artículo
Statistical Complexity Analysis of Sleep Stages
Duarte, Cristina Daiana
; Pacheco, Marianela
; Iaconis, Francisco Ramiro
; Rosso, Osvaldo A.; Gasaneo, Gustavo
; Delrieux, Claudio Augusto
; Pacheco, Marianela
; Iaconis, Francisco Ramiro
; Rosso, Osvaldo A.; Gasaneo, Gustavo
; Delrieux, Claudio Augusto
Fecha de publicación:
01/2025
Editorial:
Molecular Diversity Preservation International
Revista:
Entropy
ISSN:
1099-4300
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Studying sleep stages is crucial for understanding sleep architecture, which can help identify various health conditions, including insomnia, sleep apnea, and neurodegenerative diseases, allowing for better diagnosis and treatment interventions. In this paper, we explore the effectiveness of generalized weighted permutation entropy (GWPE) in distinguishing between different sleep stages from EEG signals. Using classification algorithms, we evaluate feature sets derived from both standard permutation entropy (PE) and GWPE to determine which set performs better in classifying sleep stages, demonstrating that GWPE significantly enhances sleep stage differentiation, particularly in identifying the transition between N1 and REM sleep. The results highlight the potential of GWPE as a valuable tool for understanding sleep neurophysiology and improving the diagnosis of sleep disorders.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(IFISUR)
Articulos de INSTITUTO DE FISICA DEL SUR
Articulos de INSTITUTO DE FISICA DEL SUR
Citación
Duarte, Cristina Daiana; Pacheco, Marianela; Iaconis, Francisco Ramiro; Rosso, Osvaldo A.; Gasaneo, Gustavo; et al.; Statistical Complexity Analysis of Sleep Stages; Molecular Diversity Preservation International; Entropy; 27; 1; 1-2025; 1-14
Compartir
Altmétricas