Mostrar el registro sencillo del ítem
dc.contributor.author
Ricetti, Lorenzo
dc.contributor.author
Hurtado, Santiago Ignacio
dc.contributor.author
Agosta Scarel, Eduardo Andres
dc.date.available
2025-12-02T10:16:45Z
dc.date.issued
2025-07
dc.identifier.citation
Ricetti, Lorenzo; Hurtado, Santiago Ignacio; Agosta Scarel, Eduardo Andres; On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina; Elsevier Science Inc.; Atmospheric Research; 320; 7-2025; 1-13
dc.identifier.issn
0169-8095
dc.identifier.uri
http://hdl.handle.net/11336/276490
dc.description.abstract
This study evaluates the spatio-temporal coherence of regional extreme precipitation indices in subtropical Argentina (STAr) derived from rain gauge station data from 1991 to 2021. For the regionalization two machine learning clustering algorithms are used—Ward’s method and K-means—and a novel stepwise regionalization approach, HAZ. While machine learning algorithms require the apriori definition of the optimal number of clusters, which varies considerably with the used metric and selection criteria, the HAZ method relies on a Pearson’s correlation coefficient threshold and avoids this limitation. In most cases machine learning algorithms struggled to produce coherent regions, with fewer clusters prioritizing spatial coherence at the expense of temporal consistency, and vice versa. Conversely, the HAZ method systematically outperformed machine learning approaches, providing regions with adequate spatio-temporal coherence. Notably, HAZ permits some stations to remain unclustered, allowing to reflect the local variability in extreme precipitation. The overall good performance of the HAZ method demonstrates its potential for broader applications in hydro-climatic studies. Moreover, two intensity indices were unsuitable for regionalization due to poor coherence, while the other three were prone to regionalization throughout the year. The Accumulated index, particularly using the 95th percentile as a threshold, emerged as the most representative, effectively synthesizing extreme precipitation characteristics in STAr. Finally, the necessity of validating the spatio-temporal internal coherence of clustering algorithms outputs is emphasized to avoid mischaracterization and ensure robust regionalization results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Heavy precipitation
dc.subject
Extreme events
dc.subject
Regionalization
dc.subject
Cluster analysis
dc.subject
Spatial pattern
dc.subject
Extreme rainfall
dc.subject.classification
Investigación Climatológica
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the spatio-temporal coherence of extreme precipitation indices in subtropical Argentina
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-12-02T09:21:18Z
dc.journal.volume
320
dc.journal.pagination
1-13
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Agosta Scarel, Eduardo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Atmospheric Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169809525001747
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.atmosres.2025.108082
Archivos asociados