Artículo
Construction of symplectic solvmanifolds satisfying the hard-Lefschetz condition
Fecha de publicación:
02/2025
Editorial:
Elsevier Science Inc.
Revista:
Linear Algebra and its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A compact symplectic manifold (M, ω) is said to satisfy the hard-Lefschetz condition if it is possible to develop an analogue of Hodge theory for (M, ω). This loosely means that there is a notion of harmonicity of differential forms in M, depending on ω alone, such that every de Rham cohomology class in has a ω-harmonic representative. In this article, we study two non-equivalent families of diagonal almostabelian Lie algebras that admit a distinguished almost-Kähler structure and compute their cohomology explicitly. We show that they satisfy the hard-Lefschetz condition with respect to any left-invariant symplectic structure by exploiting an unforeseen connection with Kneser graphs. We also show that for some choice of parameters their associated simply connected, completely solvable Lie groups admit lattices, thereby constructing examples of almost-Kähler solvmanifolds satisfying the hard-Lefschetz condition, in such a way that their de Rham cohomology is fully known.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Andrada, Adrián Marcelo; Garrone, Agustín Nicolás; Construction of symplectic solvmanifolds satisfying the hard-Lefschetz condition; Elsevier Science Inc.; Linear Algebra and its Applications; 706; 2-2025; 70-100
Compartir
Altmétricas