Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach

Saavedra, Marcos DavidIcon ; Inthamoussou, Fernando ArielIcon ; Fushimi, EmiliaIcon ; Garelli, FabricioIcon
Fecha de publicación: 07/2025
Editorial: Liebert, Mary Ann
Revista: Diabetes Technology and Obesity Medicine
e-ISSN: 2998-6702
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Background: Individuals with Type 1 Diabetes (T1D) require close glucose monitoringto prevent both short- and long-term complications. Physical activity (PA) is a significantsource of variability in metabolic dynamics, leading to glycemic fluctuations that depend onthe type, intensity, and duration of the exercise. Accurately monitoring and classifying thetype of PA is crucial for optimizing glycemic control and minimizing the risk of hypoglycemia.Methods: This study utilizes the largest clinical trial of PA in people with T1D to date,the Type 1 Diabetes and Exercise Initiative (T1DEXI), which included both structured andunstructured PA sessions, to develop an online classification approach for identifying thetype of PA (aerobic, interval, resistance). A computationally efficient Convolutional NeuralNetwork (CNN) was trained on time-frequency representations (spectrograms) of step countand heart rate signals, readily available from wearable devices, from the structured PAsessions of the T1DEXI dataset. The proposed methodology presents an ad-hoc processfor designing the spectrograms based on the CNN architecture to optimize the classifier’sperformance.Results: The CNN-based classification approach was implemented using spectrogramsof 5 and 30-minute signals, resulting in two classifiers that achieve high classification accuracywhen evaluated on the structured PA sessions. The 5-minute classifier was then applied tounstructured PA sessions, where the predicted distribution of glucose changes for the activitytypes was consistent with clinical evidence.Conclusion: These results demonstrate the potential of the proposed approach for itsintegration into decision support systems or automated insulin delivery systems, enablingimproved glucose management during exercise in T1D.
Palabras clave: Physical Activity , Classification , Convolutional Neural Network , Spectrogram
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.352Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/276169
DOI: https://doi.org/10.1177/29941520251358842
URL: https://www.liebertpub.com/doi/10.1177/29941520251358842
Colecciones
Articulos(LEICI)
Articulos de INSTITUTO DE INVESTIGACIONES EN ELECTRONICA, CONTROL Y PROCESAMIENTO DE SEÑALES
Citación
Saavedra, Marcos David; Inthamoussou, Fernando Ariel; Fushimi, Emilia; Garelli, Fabricio; Identification of Physical Activity Type in People with Diabetes: A Spectrogram-based Approach; Liebert, Mary Ann; Diabetes Technology and Obesity Medicine; 1; 1; 7-2025; 361-373
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES