Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Digital language measures capture episodic memory disruptions in people with human immunodeficiency virus: A machine learning study

Sterpin, Lucas Federico; Avendaño Avello, Camilo; Inchauspe, Jeremías; Pérez, Gonzalo NicolasIcon ; Ferrante, Franco JavierIcon ; Birba, AgustinaIcon ; Gattei, Carolina AndreaIcon ; Abusamra, Lorena; Sampedro, María BárbaraIcon ; Abusamra, ValeriaIcon ; Amoruso, LucíaIcon ; García, Adolfo MartínIcon
Fecha de publicación: 08/2025
Editorial: Taylor & Francis
Revista: Clinical Neuropsychologist
ISSN: 1385-4046
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Lingüística

Resumen

Objective: Human immunodeficiency virus (HIV) often affects episodic memory. Yet, standard measures of this domain are derived from clinicians’ simple counts of recalled and omitted pieces of information, undermining robustness, informativeness, and scalability. Here, we present an automated natural language processing (NLP) approach that tackles such limitations. Methods: We recruited 92 participants (50 people living with HIV and 42 controls), who performed a story retelling task. Using NLP tools, we compared the retellings and the original story in terms of verbosity, semantic acuity, and organizational structure. Results: We found that people living with HIV produced fewer nouns and had poorer semantic acuity and organizational similarity. Moreover, machine learning classifiers robustly differentiated between the two groups. Conclusion: These results suggest that our digital approach can reveal fine-grained episodic memory alterations in people living with HIV, offering an objective, scalable, and cost-effective complement to standard cognitive testing.
Palabras clave: HUMAN INMUNODEFICIENCY VIRUS , EPISODIC MEMORY , NATURAL LANGUAGE PROCESSING , STORY RETELLING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.581Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/276027
URL: https://www.tandfonline.com/doi/full/10.1080/13854046.2025.2545943
DOI: http://dx.doi.org/10.1080/13854046.2025.2545943
Colecciones
Articulos(CIIPME)
Articulos de CENTRO INTER. DE INV. EN PSICOLOGIA MATEMATICA Y EXP. "DR. HORACIO J.A RIMOLDI"
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Sterpin, Lucas Federico; Avendaño Avello, Camilo; Inchauspe, Jeremías; Pérez, Gonzalo Nicolas; Ferrante, Franco Javier; et al.; Digital language measures capture episodic memory disruptions in people with human immunodeficiency virus: A machine learning study; Taylor & Francis; Clinical Neuropsychologist; 8-2025; 1-25
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES