Mostrar el registro sencillo del ítem

dc.contributor.author
Da Rosa Jurao, Fernando Leonel  
dc.contributor.author
Fushimi, Emilia  
dc.contributor.author
Garelli, Fabricio  
dc.date.available
2025-11-18T17:57:24Z  
dc.date.issued
2025-10  
dc.identifier.citation
Da Rosa Jurao, Fernando Leonel; Fushimi, Emilia; Garelli, Fabricio; Model based analytical approach for physical activity quantification in people with type 1 diabetes; Springer Heidelberg; Medical And Biological Engineering And Computing; 10-2025; 1-18  
dc.identifier.issn
0140-0118  
dc.identifier.uri
http://hdl.handle.net/11336/275894  
dc.description.abstract
Physical activity (PA) represents a significant challenge in the management of type 1 diabetes (T1D), given its impact on glucose levels, which are influenced by various exercise characteristics, including duration, intensity, and type. The development of strategies that allow for the monitoring of these characteristics is crucial to improve glycemic control during exercise for both conventional therapies and automated insulin delivery systems. This paper presents a state-space model that further exploits the HR signal for the purpose of quantifying and distinguishing between aerobic and anaerobic PA. The model design is based on an analysis of the distinctive features of HR signal, including the mean HR value, the maximum HR, and the presence of pronounced fluctuations in HR. This method does not require any training and offers users interpretability and explainability. Furthermore, it enables intuitive tuning, a feature which is of particular importance in clinical settings. The model is validated using two clinical trials: the T1DEXI study, which is the largest real-world clinical trial including PA in people with T1D conducted to date, and a pilot clinical trial conducted by our research group in Argentina. The findings indicate the model has the capacity to quantify and differentiate between aerobic and resistance PA, which represent the two types of PA exhibiting the most significant and contrasting influence on glucose levels.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Type 1 diabetes  
dc.subject
Physical activity  
dc.subject
Exercise  
dc.subject
Dynamic model  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Model based analytical approach for physical activity quantification in people with type 1 diabetes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-11-14T12:33:56Z  
dc.journal.pagination
1-18  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Da Rosa Jurao, Fernando Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.description.fil
Fil: Fushimi, Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.description.fil
Fil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina  
dc.journal.title
Medical And Biological Engineering And Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11517-025-03467-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11517-025-03467-y