Artículo
A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation
Fecha de publicación:
08/2024
Editorial:
Springer
Revista:
Archive For Rational Mechanics And Analysis
ISSN:
0003-9527
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We develop an analytic theory of existence and regularity of surfaces (given by graphs) arising from the geometric minimization problem min M 1 2 ˆ M |∇MH| 2 dA where M ranges over all n-dimensional manifolds in R n+1 with prescribed boundary, ∇MH is the tangential gradient along M of the mean curvature H of M and dA is the differential of surface area. The minimizers, called surfaces of minimum mean curvature variation, are central in applications of computer-aided design, computer-aided manufacturing and mechanics. Our main results show the existence of both smooth surfaces and of variational solutions to the minimization problem together with geometric regularity results in the case of graphs. These are the first analytic results available on the literature for this problem.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Caffarelli, Luis A.; Stinga, Pablo Raul; Vivas, Hernán Agustín; A PDE Approach to the Existence and Regularity of Surfaces of Minimum Mean Curvature Variation; Springer; Archive For Rational Mechanics And Analysis; 248; 5; 8-2024; 1-13
Compartir
Altmétricas