Artículo
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality
Fecha de publicación:
09/2025
Editorial:
AIMS Press
Revista:
AIMS Mathematics
ISSN:
2473-6988
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let H be a complex Hilbert space and B(H) the algebra of bounded linear operators on H. An operator T is said to be normaloid if its numerical radius w(T) equals its operator norm kTk. In this paper, we establish several characterizations of normaloid operators in Hilbert spaces. In particular, we investigate these operators through the framework of Birkhoff–James orthogonality and normparallelism. Mainly, we show that T is normaloid if, and only if, there exists ξ0 ∈ C with |ξ0| = kTk such that I ⊥BJ (T − ξ0I), where ⊥BJ denotes Birkhoff–James orthogonality. We also present further equivalent formulations and explore various structural consequences of these characterizations.
Palabras clave:
Positive operator
,
Numerical radius
,
Operator norm
,
Inequalities
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Aladsani, Feryal; Alajyan, Asmahan; Conde, Cristian Marcelo; Feki, Kais; Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality; AIMS Press; AIMS Mathematics; 10; 9; 9-2025; 20066-20083
Compartir
Altmétricas