Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing

Lincango Yupanki, Marco VinicioIcon ; Andreoli, Verónica; Rivello, Hernán García; Bender, Andrea; Catalán, Ana I; Rahhal, Marilina; Delamer, Rocío; Asinari, Mariana; Mosquera Orgueira, Adrián; Castro, María Belén; Mela Osorio, María José; Navickas, Alicia; Grille, Sofia; Agriello, Evangelina Edith; Arbelbide, Jorge; Basquiera, Ana Lisa; Belli, Carolina BárbaraIcon
Fecha de publicación: 26/07/2024
Editorial: Korean Society for Laboratory Medicine
Revista: Annals of Laboratory Medicine
ISSN: 2234-3806
e-ISSN: 2234-3814
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Hematología

Resumen

Background: The Molecular International Prognostic Scoring System (IPSS-M) has improvedthe prediction of clinical outcomes for myelodysplastic syndromes (MDS). The ArtificialIntelligence Prognostic Scoring System for MDS (AIPSS-MDS), based on classical clinicalparameters, has outperformed the IPSS, revised version (IPSS-R). For the first time, wevalidated the IPSS-M and other molecular prognostic models and compared them with theestablished IPSS-R and AIPSS-MDS models using data from South American patients.Methods: Molecular and clinical data from 145 patients with MDS and 37 patients withMDS/myeloproliferative neoplasms were retrospectively analyzed.Results: Prognostic power evaluation revealed that the IPSS-M (Harrell’s concordance [C]-index: 0.75, area under the receiver operating characteristic curve [AUC]: 0.68) predictedoverall survival better than the European MDS (EuroMDS; C-index: 0.72, AUC: 0.68) andMunich Leukemia Laboratory (MLL) (C-index: 0.70, AUC: 0.64) models. The IPSS-M prognosticdiscrimination was similar to that of the AIPSS-MDS model (C-index: 0.74, AUC:0.66) and outperformed the IPSS-R model (C-index: 0.70, AUC: 0.61). Considering simplifiedlow- and high-risk groups for clinical management, after restratifying from IPSS-R (57%and 32%, respectively, hazard ratio [HR]: 2.8; P =0.002) to IPSS-M, 12.6% of patients wereupstaged, and 5% were downstaged (HR: 2.9; P =0.001). The AIPSS-MDS recategorized51% of the low-risk cohort as high-risk, with no patients being downstaged (HR: 5.6;P <0.001), consistent with most patients requiring disease-modifying therapy.Conclusions: The IPSS-M and AIPSS-MDS models provide more accurate survival prognosesthan the IPSS-R, EuroMDS, and MLL models. The AIPSS-MDS model is a valid optionfor assessing risks for all patients with MDS, especially in resource-limited centers wheremolecular testing is not currently a standard clinical practice.
Palabras clave: Mielodisplasia , Pronostico , IPSS-Molecular , Inteligencia Artificial
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.135Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/275700
URL: http://annlabmed.org/journal/view.html?doi=10.3343/alm.2024.0089
DOI: https://doi.org/10.3343/alm.2024.0089
Colecciones
Articulos(IMEX)
Articulos de INST.DE MEDICINA EXPERIMENTAL
Citación
Lincango Yupanki, Marco Vinicio; Andreoli, Verónica; Rivello, Hernán García; Bender, Andrea; Catalán, Ana I; et al.; Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing; Korean Society for Laboratory Medicine; Annals of Laboratory Medicine; 45; 1; 26-7-2024; 44-52
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES