Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Nanoparticle Electrodes Trigger Bubble Detachment and Enhance Gas Evolution Efficiency

Wang, Kaixin; Gadea, Esteban D.; Money, Benjamin R.; Pérez Sirkin, Yamila AnahíIcon ; Scherlis Perel, Damian ArielIcon ; White, Henry S.; Molinero, Valeria
Fecha de publicación: 04/2025
Editorial: American Chemical Society
Revista: ACS Nano
ISSN: 1936-0851
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

Nanobubble formation and binding to nanoelectrodes significantly hinder the efficiency of gas evolution reactions, limiting the potential of hydrogen production technologies. This work uncovers the pivotal role of the nanoelectrode shape in influencing catalytic performance and nanobubble detachment. Using molecular dynamics simulations supported by experimental evidence, we establish that nanoparticle electrodes with convex geometries (e.g., hemispheres, spheres, and cubes) sustain higher catalytic performance by maintaining greater reactive surface exposure than flat or concave electrodes. Most importantly, we demonstrate that convex nanoparticle electrodes mitigate bubble pinning by promoting unlimited growth and spontaneous detachment. We develop a diffusional theory that explains and generalizes our simulations, predicting the onset currents that drive nanobubbles into a nonstationary growth regime. This theory reveals that the transition to continuous bubble growth occurs when the electrochemically generated gas rate surpasses the diffusion-limited escape rate, independent of electrode size and convex shape but sensitive to the electrode support. The theoretical model extends the predictions to other gas-evolving electrochemical processes, highlighting its relevance to diverse catalytic systems. Surprisingly, our calculations reveal that bubble detachment contributes minimally to the total current. Instead, the enhanced catalytic efficiency of convex electrodes stems from their ability to sustain an exposed reactive surface, even during bubble growth. These findings provide a fundamental framework for designing nanoelectrodes that optimize gas evolution by prioritizing surface exposure rather than relying solely on bubble detachment.
Palabras clave: nanobubbles , electrolysis , voltammogram , electrocatalysis
Ver el registro completo
 
Archivos asociados
Tamaño: 6.135Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/275543
URL: https://pubs.acs.org/doi/10.1021/acsnano.5c00703
DOI: http://dx.doi.org/10.1021/acsnano.5c00703
Colecciones
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Wang, Kaixin; Gadea, Esteban D.; Money, Benjamin R.; Pérez Sirkin, Yamila Anahí; Scherlis Perel, Damian Ariel; et al.; Nanoparticle Electrodes Trigger Bubble Detachment and Enhance Gas Evolution Efficiency; American Chemical Society; ACS Nano; 19; 17; 4-2025; 16665-16674
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES