Mostrar el registro sencillo del ítem

dc.contributor.author
Gimenez, Juan Carlos  
dc.contributor.author
Lentini, Emilio  
dc.contributor.author
Fernandez Cirelli, Alicia  
dc.contributor.other
Schneier Madanes, Graciela  
dc.contributor.other
Courel, Marie Francoise  
dc.date.available
2025-11-13T11:27:10Z  
dc.date.issued
2009  
dc.identifier.citation
Gimenez, Juan Carlos; Lentini, Emilio; Fernandez Cirelli, Alicia; Forecasting streamfloaws in the San Juan River Basin in Argentina; Springer Nature Switzerland AG; 2009; 261-274  
dc.identifier.isbn
978-90-481-2775-7  
dc.identifier.uri
http://hdl.handle.net/11336/275508  
dc.description.abstract
San Juan province, located in western Argentina, presents great climate variability with arid characteristics. Mean annual rainfall averages less than 100 mm for the whole province, and snowmelt in the Andean upper basin provides the San Juan River Basin with seasonal streamflow during summer, the period of highest water demand for irrigation. Traditional streamflow forecasts for the San Juan River are based on statistical regression models that are strongly dependent on values of snowpack in winter months (July, August, and September) and streamflow values in the spring months. However, producing forecasts for San Juan River summer streamflow using the Multivariate El Niño Southern Oscillation Index (MEI) data in the preceding June of the water year as an explicative variable can improve reservoir operating system performance for irrigation. To demonstrate this, climate predictors such as the MEI were used to forecast San Juan River streamflows to provide predictability at a six-month lead time. A backpropagation neural model, based on coupled data of snowpack and a climate predictor during the winter period, proved successful in forecasting San Juan River flows during the following summer period.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature Switzerland AG  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Arid basin  
dc.subject
Backpropagation neural model  
dc.subject
Forecast  
dc.subject
Irrigation  
dc.subject
Streamflow  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Forecasting streamfloaws in the San Juan River Basin in Argentina  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-11-11T11:46:06Z  
dc.journal.pagination
261-274  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Dordrecht  
dc.description.fil
Fil: Gimenez, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Centro de Estudios Transdisciplinarios del Agua; Argentina  
dc.description.fil
Fil: Lentini, Emilio. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Centro de Estudios Transdisciplinarios del Agua; Argentina  
dc.description.fil
Fil: Fernandez Cirelli, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Centro de Estudios Transdisciplinarios del Agua; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-90-481-2776-4_16  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-90-481-2776-4_16  
dc.conicet.paginas
349  
dc.source.titulo
Water and Sustainability in Arid Regions: Bridging the Gap Between Physical and Social Sciences