Artículo
A numerical algorithm for zero counting, I: Complexity and accuracy
Fecha de publicación:
10/2008
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal Of Complexity
ISSN:
0885-064X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We describe an algorithm to count the number of distinct real zeros of a polynomial (square) system f. The algorithm performs O(log(nDκ(f)))iterations (grid refinements) where n is the number of polynomials (as well as the dimension of the ambient space), D is a bound on the polynomials’ degree, and κ(f) is a condition number for the system. Each iteration uses an exponential number of operations. The algorithm uses finite-precision arithmetic and a major feature of our results is a bound for the precision required to ensure that the returned output is correct which is polynomial in n and D and logarithmic in κ(f). The algorithm parallelizes well in the sense that each iteration can be computed in parallel polynomial time in n, log D and log(κ(f)).
Palabras clave:
Polynomial system
,
Condition
,
Number of roots
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cucker, Felipe; Krick, Teresa Elena Genoveva; Malajovich, Gregorio; Wschebor, Mario; A numerical algorithm for zero counting, I: Complexity and accuracy; Academic Press Inc Elsevier Science; Journal Of Complexity; 24; 5-6; 10-2008; 582-605
Compartir
Altmétricas