Mostrar el registro sencillo del ítem

dc.contributor.author
Tagliazucchi, Mario Eugenio  
dc.contributor.author
Müller, Marcus  
dc.date.available
2025-11-12T11:49:27Z  
dc.date.issued
2025-01  
dc.identifier.citation
Tagliazucchi, Mario Eugenio; Müller, Marcus; Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions; American Chemical Society; ACS Applied Materials & Interfaces; 17; 6; 1-2025; 9278-9288  
dc.identifier.issn
1944-8244  
dc.identifier.uri
http://hdl.handle.net/11336/275405  
dc.description.abstract
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO–PS) block copolymers with added lithium salt. Blocking of the anion fluxes by the electrodes in-operando conditions polarizes the cells and results in an inhomogeneous salt-concentration profile. This gradient of salt concentration triggers lamellae-to-disorder and disorder-to-lamellae transitions near the electrodes, in good agreement with previous experimental observations. The effects of the selectivity of the electrode surface, the salt concentration and the voltage applied to the cell are systematically studied. For PEO-selective surfaces, the lamellae parallel to the electrode that forms at low applied potentials transition to a bicontinuous morphology at high applied potentials in order to allow ion transport through the insulating PS layers. The formation of this dissipative structure, which is unexpected considering the equilibrium behavior of the material, is in line with the principle of maximum entropy production. In summary, the transport and morphology in PEO–PS electrolytes are strongly coupled: ionic currents influence self-assembly, which in turn modulates the ionic fluxes in the cell.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Li battery  
dc.subject
Electrolyte  
dc.subject
Block copolymer  
dc.subject
Simulation  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-11-11T11:10:02Z  
dc.journal.volume
17  
dc.journal.number
6  
dc.journal.pagination
9278-9288  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Müller, Marcus. Universität Göttingen; Alemania  
dc.journal.title
ACS Applied Materials & Interfaces  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.4c18838  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsami.4c18838