Mostrar el registro sencillo del ítem

dc.contributor.author
Peterson, Victoria  
dc.contributor.author
Spagnolo, Valeria  
dc.contributor.author
Galván, Catalina María  
dc.contributor.author
Nieto, Nicolás  
dc.contributor.author
Spies, Ruben Daniel  
dc.contributor.author
Milone, Diego Humberto  
dc.date.available
2025-11-07T15:52:24Z  
dc.date.issued
2025-05  
dc.identifier.citation
Peterson, Victoria; Spagnolo, Valeria; Galván, Catalina María; Nieto, Nicolás; Spies, Ruben Daniel; et al.; Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport; IOP Publishing; Journal of Neural Engineering; 22; 4; 5-2025; 1-29  
dc.identifier.issn
1741-2560  
dc.identifier.uri
http://hdl.handle.net/11336/275166  
dc.description.abstract
Objective. Controlling a motor imagery brain-computer interface (MI-BCI) can be challenging, requiring several sessions of practice. Electroencephalography (EEG)-based BCIs are particularly affected by cross-session variability. In this scenario, it is crucial to implement co-adaptive systems, where the machine adapts the decoding algorithm while the user learns how to control the BCI. To support the user learning process, it is essential to measure and provide real-time feedback on self-modulation skills. This study aims to develop a method for online assessment of MI modulation capability to build co-adaptive BCIs that improve both user performance and system accuracy. Approach. Backward optimal transport for domain adaptation allows across-session MI-BCI usage without classifier retraining. Using the cued label to guide the adaptation, a supportive backward adaptation (SBA) method is defined. The required model effort to perform a trial adaptation is proposed as an online metric of MI modulation skills. We conducted experiments on both real and simulated data to demonstrate that this metric effectively informs about the the discriminability and stability of the EEG patterns related to the MI task. The proposed metric is validated by means of Riemannian distinctiveness metrics. Main Results. Our findings show that the associated effort when applying SBA provides a meaningful way of evaluating EEG patterns discriminability, being significantly correlated with Riemannian distinctiveness metrics. Significance. This study introduces a novel framework for co-adaptive BCI learning that performs data adaptation while assessing the MI-BCI skills of the user. The proposed SBA approach can enhance BCI performance by facilitating session-to-session adaptation and empowering users with valuable feedback based on their current MI modulation strategy. This framework represents a significant advancement in developing user-centered, co-adaptive MI-BCIs that effectively support and enhance user capabilities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/embargoedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Domain adaptation  
dc.subject
optimal transport  
dc.subject
user-centered BCI  
dc.subject
co-adaptive BCI  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-11-06T14:22:54Z  
dc.journal.volume
22  
dc.journal.number
4  
dc.journal.pagination
1-29  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Spagnolo, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Galván, Catalina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Nieto, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
Journal of Neural Engineering  
dc.rights.embargoDate
2025-12-07  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/addb7a  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1741-2552/addb7a