Mostrar el registro sencillo del ítem

dc.contributor.author
Matzkin, Victor Franco  
dc.contributor.author
Larrazabal, Agostina Juliana  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Dolz, Jose  
dc.contributor.author
Ferrante, Enzo  
dc.date.available
2025-11-07T12:13:49Z  
dc.date.issued
2025-09  
dc.identifier.citation
Matzkin, Victor Franco; Larrazabal, Agostina Juliana; Milone, Diego Humberto; Dolz, Jose; Ferrante, Enzo; Towards reliable WMH segmentation under domain shift: An application study using maximum entropy regularization to improve uncertainty estimation; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 196; 9-2025; 1-10  
dc.identifier.issn
0010-4825  
dc.identifier.uri
http://hdl.handle.net/11336/275130  
dc.description.abstract
Background: Accurate segmentation of white matter hyperintensities (WMH) is crucial for clinical decisionmaking, particularly in the context of multiple sclerosis. However, domain shifts, such as variations in MRI machine types or acquisition parameters, pose significant challenges to model calibration and uncertainty estimation. This comparative study investigates the impact of domain shift on WMH segmentation, proposing maximum-entropy regularization techniques to enhance model calibration and uncertainty estimation. The purpose is to identify errors appearing after model deployment in clinical scenarios using predictive uncertainty as a proxy measure, since it does not require ground-truth labels to be computed. Methods: We conducted experiments using a classic U-Net architecture and evaluated maximum entropy regularization schemes to improve model calibration under domain shift on two publicly available datasets: the WMH Segmentation Challenge and the 3D-MR-MS dataset. Performance is assessed with Dice coefficient, Hausdorff distance, expected calibration error, and entropy-based uncertainty estimates. Results: Entropy-based uncertainty estimates can anticipate segmentation errors, both in-distribution and out-ofdistribution, with maximum-entropy regularization further strengthening the correlation between uncertainty and segmentation performance, while also improving model calibration under domain shift. Conclusions: Maximum-entropy regularization improves uncertainty estimation for WMH segmentation under domain shift. By strengthening the relationship between predictive uncertainty and segmentation errors, these methods allow models to better flag unreliable predictions without requiring ground-truth annotations. Additionally, maximum-entropy regularization contributes to better model calibration, supporting more reliable and safer deployment of deep learning models in multi-center and heterogeneous clinical environments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Uncertainty estimation  
dc.subject
Domain shift  
dc.subject
Medical image segmentation  
dc.subject
Maximum-entropy regularization  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Towards reliable WMH segmentation under domain shift: An application study using maximum entropy regularization to improve uncertainty estimation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-11-06T14:21:15Z  
dc.journal.volume
196  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Matzkin, Victor Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Larrazabal, Agostina Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Dolz, Jose. No especifíca;  
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.journal.title
Computers In Biology And Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0010482525009904  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compbiomed.2025.110639