Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience

Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; Vu, Tu N.; Raman, Chirag; Tejada, Julian; Huynh, Van Thong; Zhang, Guangyi; Cui, Tanming; Podder, Sharanyak; Chavda, Rushi; Pandey, Shubham; Upadhyay, Arpit; Padilla Buritica, Jorge I.; Barrera Causil, Carlos J.; Ji, Linying; Dollack, Felix; Kiyokawa, Kiyoshi; Liu, Huakun; Tagliazucchi, Enzo RodolfoIcon ; Bugnon, Leandro ArielIcon ; Bruno, Nicolás MarceloIcon ; D Amelio, Tomás ArielIcon ; Hinduja, Saurabh; Marmolejo Ramos, Fernando; Canavan, Shaun; Jivnani, Liza; Saganowski, Stanisław
Fecha de publicación: 06/2025
Editorial: Royal Society of Chemistry
Revista: Royal Society Open Science
e-ISSN: 2054-5703
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Researchers are increasingly using machine learning to study physiological markers of emotion. We evaluated the promises and limitations of this approach via a big team science competition. Twelve teams competed to predict self-reported affective experiences using a multi-modal set of peripheral nervous system measures. Models were trained and tested in multiple ways: with data divided by participants, targeted emotion, inductions, and time. In 100% of tests, teams outperformed baseline models that made random predictions. In 46% of tests, teams also outperformed baseline models that relied on the simple average of ratings from training datasets. More notably, results uncovered a methodological challenge: multiplicative constraints on generalizability. Inferences about the accuracy and theoretical implications of machine learning efforts depended not only on their architecture, but also how they were trained, tested, and evaluated. For example, some teams performed better when tested on observations from the same (vs. different) subjects seen during training. Such results could be interpreted as evidence against claims of universality. However, such conclusions would be premature because other teams exhibited the opposite pattern. Taken together, results illustrate how big team science can be leveraged to understand the promises and limitations of machine learning methods in affective science and beyond.
Palabras clave: machine learning , affective computing , physiological signals
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.726Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/275082
URL: https://royalsocietypublishing.org/doi/10.1098/rsos.241778
DOI: http://dx.doi.org/10.1098/rsos.241778
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Coles, Nicholas A.; Perz, Bartosz; Behnke, Maciej; Eichstaedt, Johannes C.; Kim, Soo Hyung; et al.; Big team science reveals promises and limitations of machine learning efforts to model physiological markers of affective experience; Royal Society of Chemistry; Royal Society Open Science; 12; 6; 6-2025; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES