Artículo
Robust estimation of heteroscedastic regression models: a brief overview and new proposals
Fecha de publicación:
03/2025
Editorial:
Springer
Revista:
Statistical Papers
ISSN:
0932-5026
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We collect robust proposals given in the field of regression models with heteroscedastic errors. Our motivation stems from the fact that the practitioner frequently faces the confluence of two phenomena in the context of data analysis: nonlinearity and heteroscedasticity. The impact of heteroscedasticity on the precision of the estimators is well--known, however the conjunction of these two phenomena makes handling outliers more difficult.An iterative procedure to estimate the parameters of a heteroscedastic nonlinear model is considered. The studied estimators combine weighted $MM-$regression estimators, to control the impact of high leverage points, and a robust method to estimate the parameters of the variance function.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Amado, Conceição; Bianco, Ana Maria; Boente Boente, Graciela Lina; Rodrigues, Isabel M.; Robust estimation of heteroscedastic regression models: a brief overview and new proposals; Springer; Statistical Papers; 66; 3; 3-2025; 1-30
Compartir
Altmétricas