Mostrar el registro sencillo del ítem
dc.contributor.author
Rucci, Enzo
dc.contributor.author
García, Carlos
dc.contributor.author
Botella Juan, Guillermo
dc.contributor.author
de Giusti, Armando Eduardo
dc.contributor.author
Naiouf, Ricardo Marcelo
dc.contributor.author
Prieto Matías, Manuel
dc.contributor.other
Wong, Ka-Chun
dc.date.available
2025-11-05T14:37:07Z
dc.date.issued
2016
dc.identifier.citation
Rucci, Enzo; García, Carlos; Botella Juan, Guillermo; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; State-of-the-Art in Smith–Waterman Protein Database Search on HPC Platforms; Springer Nature Switzerland AG; 2016; 197-223
dc.identifier.isbn
978-3-319-41279-5
dc.identifier.uri
http://hdl.handle.net/11336/274943
dc.description.abstract
Searching biological sequence database is a common and repeated task in bioinformatics and molecular biology. The Smith-Waterman algorithm is the most accurate method for this kind of search. Unfortunately, this algorithm is computationally demanding and the situation gets worse due to the exponential growth of biological data in the last years. For that reason, the scientific community has made great efforts to accelerate Smith-Waterman biological database searches in a wide variety of hardware platforms. We give a survey of the state-of-the-art in Smith-Waterman protein database search, focusing on four hardware architectures: central processing units, graphics processing units, field programmable gate arrays and Xeon Phi coprocessors. After briefly describing each hardware platform, we analyse temporal evolution, contributions, limitations and experimental work and the results of each implementation. Additionally, as energy efficiency is becoming more important every day, we also survey performance/power consumption works. Finally, we give our view on the future of Smith-Waterman protein searches considering next generations of hardware architectures and its upcoming technologies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Nature Switzerland AG
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bioinformatics
dc.subject
Computational acceleration
dc.subject
Database search
dc.subject
Smith-Waterman algorithm
dc.subject
Protein sequence
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
State-of-the-Art in Smith–Waterman Protein Database Search on HPC Platforms
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2025-11-05T12:34:58Z
dc.journal.pagination
197-223
dc.journal.pais
Suiza
dc.journal.ciudad
Cham
dc.description.fil
Fil: Rucci, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
dc.description.fil
Fil: García, Carlos. Universidad Complutense de Madrid; España
dc.description.fil
Fil: Botella Juan, Guillermo. Universidad Complutense de Madrid; España
dc.description.fil
Fil: de Giusti, Armando Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
dc.description.fil
Fil: Naiouf, Ricardo Marcelo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
dc.description.fil
Fil: Prieto Matías, Manuel. Universidad Complutense de Madrid; España
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-41279-5_6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-41279-5_6
dc.conicet.paginas
428
dc.source.titulo
Big Data Analytics in Genomics
Archivos asociados