Mostrar el registro sencillo del ítem

dc.contributor.author
Rucci, Enzo  
dc.contributor.author
García, Carlos  
dc.contributor.author
Botella Juan, Guillermo  
dc.contributor.author
de Giusti, Armando Eduardo  
dc.contributor.author
Naiouf, Ricardo Marcelo  
dc.contributor.author
Prieto Matías, Manuel  
dc.contributor.other
Wong, Ka-Chun  
dc.date.available
2025-11-05T14:37:07Z  
dc.date.issued
2016  
dc.identifier.citation
Rucci, Enzo; García, Carlos; Botella Juan, Guillermo; de Giusti, Armando Eduardo; Naiouf, Ricardo Marcelo; et al.; State-of-the-Art in Smith–Waterman Protein Database Search on HPC Platforms; Springer Nature Switzerland AG; 2016; 197-223  
dc.identifier.isbn
978-3-319-41279-5  
dc.identifier.uri
http://hdl.handle.net/11336/274943  
dc.description.abstract
Searching biological sequence database is a common and repeated task in bioinformatics and molecular biology. The Smith-Waterman algorithm is the most accurate method for this kind of search. Unfortunately, this algorithm is computationally demanding and the situation gets worse due to the exponential growth of biological data in the last years. For that reason, the scientific community has made great efforts to accelerate Smith-Waterman biological database searches in a wide variety of hardware platforms. We give a survey of the state-of-the-art in Smith-Waterman protein database search, focusing on four hardware architectures: central processing units, graphics processing units, field programmable gate arrays and Xeon Phi coprocessors. After briefly describing each hardware platform, we analyse temporal evolution, contributions, limitations and experimental work and the results of each implementation. Additionally, as energy efficiency is becoming more important every day, we also survey performance/power consumption works. Finally, we give our view on the future of Smith-Waterman protein searches considering next generations of hardware architectures and its upcoming technologies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature Switzerland AG  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bioinformatics  
dc.subject
Computational acceleration  
dc.subject
Database search  
dc.subject
Smith-Waterman algorithm  
dc.subject
Protein sequence  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
State-of-the-Art in Smith–Waterman Protein Database Search on HPC Platforms  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-11-05T12:34:58Z  
dc.journal.pagination
197-223  
dc.journal.pais
Suiza  
dc.journal.ciudad
Cham  
dc.description.fil
Fil: Rucci, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina  
dc.description.fil
Fil: García, Carlos. Universidad Complutense de Madrid; España  
dc.description.fil
Fil: Botella Juan, Guillermo. Universidad Complutense de Madrid; España  
dc.description.fil
Fil: de Giusti, Armando Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina  
dc.description.fil
Fil: Naiouf, Ricardo Marcelo. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina  
dc.description.fil
Fil: Prieto Matías, Manuel. Universidad Complutense de Madrid; España  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-41279-5_6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-41279-5_6  
dc.conicet.paginas
428  
dc.source.titulo
Big Data Analytics in Genomics