Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Low‐input, interpretable models to forecast maize yield at multiple scales based on absorbed radiation

Menendez Coccoz, Martin; Rotili, Diego HernánIcon ; Otegui, Maria ElenaIcon ; Martini, Gustavo; Paolini, María; Di Bella, Carlos MarceloIcon ; Piñeiro, GervasioIcon ; Oesterheld, MartinIcon
Fecha de publicación: 06/2025
Editorial: American Society of Agronomy
Revista: Agronomy Journal
ISSN: 0002-1962
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

Most crop yield forecast models operate at coarse scales (e.g., county or region) or need extensive input data for finer resolutions. Here, we present maize (Zea mays L.) yield forecast models that require minimal user data and operate at field and regional scales throughout the growing season. Using 1853 maize field-years in Argentina, with known location, sowing date, and yield, our models leveraged absorbed radiation (from satellite imagery), temperature-based phenology, regional site-year properties, El Niño-Southern Oscillation (ENSO) phase predictions, and sowing period. At the field scale, our models achieved high accuracy at physiological maturity, with a mean error of 1 t ha−1 (16%). Yield forecasts were mainly driven by absorbed radiation during the reproductive phase and a regional factor. Early-season forecasts incorporated ENSO and sowing period, but with reduced accuracy. When scaled to regional forecasts, the models performed even better, with a mean error of 0.3 t ha−1 (4%). These results combine a novel case of yield forecast because of the low data requirements from users, high anticipation (30–90 days before harvest), and good levels of accuracy at both field and regional scales. Additionally, the models’ interpretability makes them valuable diagnostic tools for post-season analysis.
Palabras clave: MAIZE YIELD , FORECAST MODELS , ABSORBED RADIATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.521Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/274705
URL: https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.70089
DOI: http://dx.doi.org/10.1002/agj2.70089
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Menendez Coccoz, Martin; Rotili, Diego Hernán; Otegui, Maria Elena; Martini, Gustavo; Paolini, María; et al.; Low‐input, interpretable models to forecast maize yield at multiple scales based on absorbed radiation; American Society of Agronomy; Agronomy Journal; 117; 3; 6-2025; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES