Mostrar el registro sencillo del ítem

dc.contributor.author
D'amato, Juan Pablo  
dc.contributor.author
Rinaldi, Pablo Rafael  
dc.contributor.author
Boroni, Gustavo Adolfo  
dc.date.available
2025-11-03T12:18:30Z  
dc.date.issued
2025-03  
dc.identifier.citation
D'amato, Juan Pablo; Rinaldi, Pablo Rafael; Boroni, Gustavo Adolfo; Urban tree surveying using aerial UAV images and machine learning algorithms; Information and Technology Management Association; World Journal of Information Systems; 1; 3; 3-2025; 71-82  
dc.identifier.uri
http://hdl.handle.net/11336/274584  
dc.description.abstract
In this work, a novel approach to surveying urban trees based on automatic detecting from images captured using unmanned aerial vehicles (UAVs) is presented. Such a method is a cost-effective alternative to traditional measurement techniques. Through autonomous flights, UAVs capture detailed aerial imagery of urban areas, which is then processed to generate high-resolution raster images and elevation models. Machine learning algorithms are then applied to these images to identify trees, refining the detection process by eliminating false positives and estimating tree heights. Dealing with challenges such as flight time limitations and the irregularity of urban trees, the method achieves great accuracy in tree identification, not only covering the tree detection but also the separation between sidewalk and block interior trees, the estimation of height among other important data. Although the methodology does not cover all aspects of tree surveying, such as trunk health or diameter, it serves as a complementary tool to ground survey systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Information and Technology Management Association  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
machine learning,  
dc.subject
UAV  
dc.subject
urban studies  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Urban tree surveying using aerial UAV images and machine learning algorithms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-29T12:21:45Z  
dc.identifier.eissn
3051-6420  
dc.journal.volume
1  
dc.journal.number
3  
dc.journal.pagination
71-82  
dc.journal.pais
Portugal  
dc.description.fil
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Rinaldi, Pablo Rafael. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Boroni, Gustavo Adolfo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.journal.title
World Journal of Information Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.17013/wjis.v1i3.20  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://wjis.org/index.php/wjis/article/view/20